Observations on automated client-side query federation
over Wikidata SPARQL endpoints

Jonni Hanski, Elias Crum and Ruben Taelman

IDLab, Department of Electronics and Information Systems, Ghent University — imec

Abstract

The recent Wikidata graph split divided a previously singular SPARQL endpoint into two distinct ones, breaking
existing queries that depend on the combined data from these endpoints. To accommodate this graph split,
instructions for manual source assignment have been provided. However, the proposed solution of manual source
annotations within the queries themselves, through the use of SPARQL SERVICE clauses, not only imposes
additional work on users of these endpoints, but also assumes prior knowledge of which data come from which
endpoint, and how they should be combined. Potential future graph splits would result in this manual source
assignment having to be done again. Within this work, we employ client-side query federation over the two
Wikidata endpoints, using state-of-the-art source assignment approaches for query operations, to demonstrate
the feasibility and challenges of automated federation as an alternative to manual source assignment. Through
our experiments, we show how client-side federation can offer a viable alternative to manual source assignment
for certain queries, where the amount of data to process remains within client-side resource limits, and provided
no custom behaviour is attached to standard SPARQL operations. Future work will be needed to address the
trade-offs between network request counts and client-side data processing, to be able to execute queries that
access large amounts of data from multiple sources.

Keywords
SPARQL, Wikidata, federated querying, VoID,

1. Introduction

The recent graph split by Wikidata' saw a previously unified SPARQL [1] endpoint [2] split in two. The
split was done for scalability reasons, due to technical limitations imposed by the underlying software
implementation. However, this also breaks queries that rely on the full dataset being available in the
original endpoint. The endpoint, at present, offers no automated means of adjusting queries to account
for this split, and the onus is thereby on the users composing and executing queries to ensure they
extract the data from the endpoint where it exists, under pain of incomplete or inaccurate results.

The impact analysis by Wikimedia Foundation?, taking into account a number of Wikidata-related
tools alongside a representative sample of other queries from their logs®, places the number of known
affected queries at below 10%. Although this proves that the vast majority of queries continue executing
successfully even after the graph split, it also means there is a non-negligible share of queries that fail, lest
they be updated. To assist query authors with these updates, a set of documentation exists*, accompanied
by a federation guide® and a number of federated query examples®. These examples and documentation
make use of the SERVICE clauses in the SPARQL query language, that allow forwarding parts of a query
to another service endpoint. This requires manual modifications to the queries themselves, and the
query author needs to be aware of the data distribution across both endpoints.

The 5th Wikidata Workshop for the scientific Wikidata community at the International Semantic Web Conference 2025, November
02-03, 2025, Nara, Japan

Q jonni.hanski@ugent.be (J. Hanski); elias.crum@ugent.be (E. Crum); ruben.taelman@ugent.be (R. Taelman)

® 0009-0004-0721-2169 (J. Hanski); 0009-0005-3991-754X (E. Crum); 0000-0001-5118-256X (R. Taelman)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
Thttps://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split
*https://wikitech.wikimedia.org/wiki/Wikidata_Query_Service/WDQS_Graph_Split_Impact_Analysis
*https://gitlab.wikimedia.org/repos/search-platform/notebooks/-/tree/main/wdqs/T349512_representative_wikidata_query_samples
*https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split
Shttps://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split/Internal_Federation_Guide
Shttps://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split/Federated_Queries_Examples

mailto:jonni.hanski@ugent.be
mailto:elias.crum@ugent.be
mailto:ruben.taelman@ugent.be
https://orcid.org/0009-0004-0721-2169
https://orcid.org/0009-0005-3991-754X
https://orcid.org/0000-0001-5118-256X
https://creativecommons.org/licenses/by/4.0/deed.en

The alternative to manually assigning parts of a query to different sources is virtual integration [3, 4,
5, 6], where data from different sources is made available for querying as if it were centralised. This can
be implemented through automated query federation over multiple data sources by the query engine
itself [3], and the approaches to implementing it have been categorised as top-down, bottom-up, and
mixed [7]. The top-down approaches rely on complete information at optimisation time, to produce
a query plan based on an overview of the data source contents, and then executing it. Within distributed
Linked Data contexts, this overview of data sources can be enabled through the use of an indexing
system [8], with individual data source contents further summarised in their service descriptions [3].
The standard Vocabulary of Interlinked Datasets (VoID) [9] allows for the documentation of data source
contents, such as information on predicate and class values, the number of triples with a given predicate
value, or the number of subjects with a given class as their type. This information can also be used to
estimate triple pattern cardinalities, using the set of formulae from Hagedorn et al. [10]. The bottom-up
approaches, such as traversal-based query execution [11], perform source discovery and data retrieval
during query execution, and are thereby limited in their advance optimisation capabilities, having
to rely on heuristics. The mixed approaches rely on partial information to be present during query
planning, and use corrective actions, such as join order adjustments, to perform additional optimisation
when accurate metrics become available.

The focus of our work is the top-down approach, where the data sources — the two Wikidata
SPARQL endpoints — are known beforehand. This allows us to use two prominent state-of-the-art
approaches for source assignment to achieve client-side virtual integration: FedX and SPLENDID. The
FedX [5] approach for source assignment uses ASK queries on all known sources, and does not rely on
additional metadata being exposed by these data sources, making it the more universal solution. The
SPLENDID [12] approach, on the other hand, makes use of VoID dataset descriptions, by first checking
which data sources may contain data for given parts of a query, and then verifying these potential
sources using SPARQL ASK queries as in FedX. The Wikidata SPARQL endpoints expose VoID dataset
descriptions at their URIs, in addition to their SPARQL service descriptions. This allows for the use of
the formulae from Hagedorn et al. [10] for cardinality estimation, as well as the use of these cardinality
estimates for the initial source assignment in SPLENDID. Using either the FedX or SPLENDID approach,
when the engine is able to identify exclusive groups [5] of operations only answered by a single source,
these operations can be grouped together for more efficient execution at the specific source, reducing
unnecessary data transfer and processing locally, as well as achieving source assignment for operations
within a query that closely match manual assignment. When an operation can be answered by multiple
sources, the data can be combined locally using a UNION over those sources, as with Semagrow [6].

Within this work, we demonstrate the feasibility and challenges of client-side query federation over
the Wikidata endpoints, using the FedX and SPLENDID approaches to source assignment. We compare
the set of example federated Wikidata queries with manual server-side federation to their correspoding
queries with automated client-side federation, and identify issues with client-side handling of large
volumes of data, as well as with custom server-side handling of standard SPARQL query operations
with specific values, that a client-side query engine could not be aware of, that can prevent successful
source assignment and query execution in practice.

The remainder of this paper is structured as follows. Section 2 outlines the experiments performed
within the context of this work, followed by Section 3 to analyse the results of these experiments, and
Section 4 for the conclusions.

2. Experiments

The goal of our experiments is to explore the feasibility of automated client-side query federation, as
an alternative to the manual server-side approach. Therefore, we performed our experiments with these
two different means of dividing a query between endpoints:

1. The automated approach without SERVICE clauses, where the local query engine divides the
operations between sources. The local query engine extracts the necessary information from

SELECT (COUNT(*) as ?count) WHERE {
SELECT (COUNT(*) as ?count) WHERE {

entity wdt:P4101 wd:Q41506 ! ?entity wdt:P4101 wd:Q41506 query-main
’ : ; E— T] } UNION {
2! H -
) FILTER(EXISTS { ?entity p:P495 [] }) e 2entity wdt:P4101 wd:Q41506 II"II
}
FILTER(EXISTS { ?entity p:P495 [] }) query-scholarly
}
SELECT (?countMain + ?countSchol AS ?count) WHERE { .
SELECT (?countMain + ?countSchol AS ?count) WHERE {
SELECT (COUNT(*) as ?countMain) WHERE { {
7entity wdt:P4101 wd:Q41506 ; SELECT (COUNT(*) as ?countMain) WHERE {
p:P495 [] . ?entity wdt:P4101 wd:Q41506 ;
p:P495 [] .
} ais][
SERVICE wdsubgraph:scholarly_articles { > !l! ?
SELECT (COUNT(*) as ?countSchol) WHERE
,’entiéy wdtng)uBl wd-gzusoe .) { COMUNCR query-main SELECT (COUNT(*) as ?countSchol) WHERE {
y p:PAgs []' : ! ?entity wdt:P4101 wd:Q41506 ; —_—

p:P495 []
}
} 1
3 }
}

query-scholarly

Figure 1: The automated approach (top) requires the local client-side query engine to split the operations
between sources by itself, execute the partial queries at the two Wikidata endpoints, and perform the construction
of the final results locally. The manual approach using service clauses (bottom) requires no processing from
the local query engine, as it can simply forward the query to the main Wikidata endpoint as the only source,
and pass through the results from this endpoint. The remote main endpoint is responsible for retrieving the
additional data from the scholarly endpoint, as instructed by the service clause.

remote endpoints, passing data between them if necessary to properly handle intermediate
bindings, and produces the final results locally. Within this approach, the query engine is
responsible for appropriate source assignment of query operations.

2. The manual approach using SERVICE clauses, where the query author manually divides the
operations between sources when composing the query. The local query engine fowards the
full query to the primary remote endpoint, that forwards parts of the query to other sources in
accordance with these clauses. Within this approach, the author of the query is responsible for
appropriate source assignment of query operations.

The automated source assignment is implemented in three different ways, all assuming prior knowl-
edge of the data source URIs, following the FedX [5] and SPLENDID [12] approaches to source assign-
ment:

1. The ASK-based approach, as in FedX, where a query operation is sent to each source in an ASK
query, to check whether the source contains any results for that operation.

2. The COUNT-based approach, functionally identical to ASK as in FedX, to account for scenarios
where an endpoint does not support ASK queries.

3. The VoID-based approach, as in SPLENDID, where the initial source assignment is done based on
VoID dataset descriptions, followed by ASK queries to eliminate false positive assignments.

The main difference between SERVICE-based federation and automated one is the distribution of
responsibilities. When using SERVICE clauses, the endpoint receiving the full query is responsible
for forwarding the contents of the clauses to their respective endpoints, and for constructing the final
results for the query. Using the automated approach, the client assumes the responsibility of executing
the query, and forwarding parts of it to the appropriate remote endpoints as needed. This is illustrated
in Fig. 1. The system resources, such as network bandwidth or processor and memory allocation, may
differ considerably between a remote endpoint and a local query engine. Therefore, the focus of our
experiments is on the feasibility of client-side federation, and the practical challenges encountered,
rather than absolute performance or resource consumption.

Within this work, we used the Comunica query engine framework[13], that allows client-side query
federation over remote SPARQL endpoints. The engine allows fine-grained configuration of behaviour,

Query Name in experiments #TP Property paths Notable aggregates and other operations
1 author-birthday limit
2 finding-duplicated-external-ids-with-a-group-by group, order, having, count
3 joining-papers-and-authors distinct, group, count, having
4 lookup-from-mwapi-results alt order, limit
5 number-of-articles-with-cito-annotated-citations-by-year seq group, order, count, distinct, min, if, select, optional
6 paper-subjects limit
7 property-paths *, +,alt, seq order, distinct, select, sample, group
8 publications-wikiproject-author-not-in-project distinct, minus

distinct, limit
alt group, order, min, sample, distinct, optional

9 publications-wikiproject-main-subject-instance-of-person
10 recent-publications
11 simple-count

WNRNNO®WWARNOOD WW=N

12 simple-lookup-by-object-on-the-truthy-graph order
13 simple-lookup-by-subject
14 sitelinks-lookup order

Table 1

Overview of the queries used for the experiments, extracted from the Wikidata federation tutorial and the sample
federated queries. The number of triple patterns in #TP excludes the service parameters used by the endpoints.
The nested SELECT clauses in query 11 were removed for the automated federation approach as unnecessary.

as well as component substitution, to help ensure fair comparisons between the algorithmic approaches,
to avoid other engine implementation differences. The Comunica query engine also allows for the use of
rate-limiting, that matches the client request rate to the server response rate. For example, if the server
responds to one request every 100 milliseconds, then the query engine will send one request every 100
milliseconds. Following preliminary manual testing, we decided to enable this feature by default, due
to the Wikidata SPARQL endpoints imposing a query budget of 60 seconds of processing within 60
seconds on each client’. Furthermore, individual queries are limited to 60 seconds in their duration. The
query engine also supports the HTTP status code 429 and the Retry-After header, and we configured
the engine to retry each failed request ten times, to ensure a request failed by rate-limiting would have
a chance to be executed successfully. This rate-limiting approach, however, can not account for the
total execution budget, and the engine supports no means of retrying queries that the remote endpoint
terminates while the response is already being transferred to the client, so overlapping, long-running
queries may still cause issues.

The queries used were taken from the Wikidata federation tutorial® and the example federated query
set”. The Wikidata label helpers using SERVICE clauses with wikibase: label were replaced with
rdfs:label extraction for all queries with a language tag filter, to ensure basic query functionality does
not rely on Wikidata internal helpers. The queries vary in complexity, ranging from two triple patterns
to eight of them, and from simple counts to complex subqueries with property paths and aggregates, as
summarised in Table 1. Some of this complexity can be removed using client-side federation, such as
most SERVICE clauses and their accompanying UNION operations. This also allows for the removal of
some workarounds, that make use of a combination of BOUND, IF, and COALESCE, such as in query 5,
which should also improve the readability of the queries and ease their composition.

The experiments were executed on the same retail commodity hardware machine, with an 8-core
16-thread CPU and 32 GB of memory, using jbr,js'’. The query timeout was set to 5 minutes, following
manual experiments where queries that consistently succeeded did so within this timeframe. The logical
query plans were extracted from the engine separately from the query execution. These plans are the
result of the query planning phase, with algebraic optimisation and source assignment complete, but
before runtime optimisations by the engine, such as join entry ordering or physical operator selection for
logical ones. This allows us to compare the source assignment between different automated approaches.
Our experiments and their results are available online for transparency and reproducibility’.

"https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_limits
Shttps://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split/Internal_Federation_Guide
*https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split/Federated_Queries_Examples
https://github.com/rubensworks/jbr.js
https://github.com/surilindur/comunica-experiments/tree/main/experiments/wikidata-graph-split

Query | SERVICE + ASK Automatic + ASK Automatic + COUNT Automatic + VoID + ASK
Duration (s) Results #HTTP | Duration (s) Results #HTTP Duration (s) Results #HTTP Duration(s) Results #HTTP
1 7.82 4 2 8.54 4 46 5.94 4 43 3.95 4 19
2 20.51 2,384 2 oom - 8 oom - 6 oom - 6
3 2.76 0 2 mwbudget - 149 mwbudget - 144 32.09 0 215
4 2.97 10 2 mwapi - 23 mwapi - 17 mwapi - 13
5 3.07 53 2 mwbudget - 311 mwbudget - 180 timeout - 3,865
6 2.76 2 2 4.27 2 22 4.57 2 19 3.00 2 1
7 3.69 4 2 mwbudget - 140 mwbudget - 142 mwbudget - 14
8 8.64 13 2 timeout - 2,177 timeout - 2,429 timeout - 3,129
9 10.65 100 2 oom - 266 mwbudget - 222 mwbudget - 608
10 292 4 2 mwbudget - 68 mwbudget - 93 mwbudget - 162
11 2.66 1 2 timeout - 2,154 timeout - 2,548 146.22 1 1,325
12 45.28 1,815 2 mwbudget - 10 mwbudget - 73 mwbudget - 1,281
13 2.70 3 2 5.39 6 30 116.69 6 56 4.02 6 22
14 3.09 140 2 122.31 140 1,138 120.10 140 1,132 71.30 140 572
Total 28 6,542 7,104 11,242
ASK 14 144 34 125
COUNT - 4,785 5,384 -
Planning 50% 75% 76% 1%
Table 2

The SERVICE clause-based results from manual queries establish the ground truth and the baseline to compare
against. The automated client-side federation approaches executed only 4 queries successfully, or 6 when using
VolID descriptions to avoid COUNT queries, at the expense of considerably higher HTTP request counts. The
queries that timed out locally are marked with timeout, the ones that ran out of memory with oom, the ones
that failed after exceeding server-side execution budget with mwbudget, and the queries that failed due to the
custom use of SERVICE with wikibase:mwapi with mwapi.

3. Results

The experiment results, summarised in Table 2, show the majority of queries failing when using client-
side automated federation. This does not appear to be caused by source assignment itself, as the
automated source assignment in the query plans match the manual assignment via SERVICE clauses,
while operating under the assumption that no custom behaviour is attached to standard SPARQL query
operations. Thus, the source assignment part of automated federation works, and the failures are the
result of other factors.

The server-side manual federation approach resulted in a consistent HTTP request count of two
requests per query: one query to establish the endpoint type, and another one to send the query. The
automated client-side approaches produced much higher HTTP request counts, as expected, with
the client-side engine being responsible for extracting data from the servers. The notable exception
was query 2, that resulted in only 6-8 requests, due to the engine downloading excessive amounts of
data from the servers and then crashing. This issue was caused by the engine having to evaluate the
pattern (?q, wdt:P244, ?extid) at both sources, and process the aggregates on ?q and ?extid
locally. The main endpoint contains 1.6 million matches for this pattern and the scholarly graph 14,
and combined with the aggregates including GROUP BY, ORDER BY, HAVING, and COUNT, this becomes
an overwhelming task for a client-side engine. When the query requires combining considerable
amounts of data from both endpoints, the alternative to downloading all the data locally is to take
intermediate results from one endpoint and pass them to the other one, such as with client-side nested
loop joins or bind joins [14], at the cost of additional HT TP requests. This can be observed with query
11, for example, that contains only two triple patterns, and performs a count over their join result.
One of the patterns is only matched by the scholarly endpoint, with 659 results, but the other pattern
contains 71,031 results in the scholarly graph, and 2.6 million matches in the main graph. The engine
therefore checks each binding from the scholarly graph at the main graph, and this can cause the engine
to take too long to process the query. The same can be observed with query 8, where both endpoints
contain results for the triple pattern (?thesis, wdt:P5008, wd:Q111645234) — 23,823 matches
in the main graph, and 66,245 in the scholarly one — and the engine has to combine these with other
data from the main endpoint to resolve the final query results. This takes too many HTTP requests,
and causes the query to time out. The alternative of downloading the required data from the main
endpoint would also fail, because the pattern (?person, rdfs:label, ?personLabel) has 631

million matches in the main endpoint, and thus the bindings for ?person must all be checked at the
endpoint, instead.

Beyond the number of HTTP requests, the type of queries being sent for query planning purposes
also exhibits interesting trends. The ASK-based approach used around 75% of its HTTP requests on
query planning, the COUNT-based approach 76%, and the VoID-based approach only 1%. Thus, through
the use of VoID descriptions, the relative share of queries used to execute the query could be increased
to 99% within these experiments, up from 24-25%. Furthermore, the VoID-based approach was able to
avoid the Wikidata execution budget limit of 60 seconds every 60 seconds, that prohibited the other
two approaches from finishing query 3, and allowed it to progress further with query 5, running into
the local timeout, instead. The VoID-based approach was also able to skip all the COUNT queries to
extract metadata during the execution of query 11, used by the engine to optimise join ordering at
runtime, when the other approaches timed out due to sending COUNT queries for each binding they were
checking at the endpoint. The Wikidata VoID description is therefore extremely useful for client-side
federation over the endpoints.

Another noteworthy observation is the failure to execute query 4, that makes use of the MediaWiki
API abstraction, implemented server-side. This abstraction is implemented through non-standard
handling of SERVICE clauses, when the endpoint URI is wikibase :mwapi, and the contents of the
clause are not processed as triple patterns, being converted into an external API call with specific
parameters, instead. The client-side query engine does not implement the same abstraction, and instead
treats the wikibase :mwapi URI as a query source, and fails to execute the query, due to there being
no actual data source available at that URIL This demonstrates the unintended side-effect of custom
server-side handling of specific values or query operations, that can inhibit the transfer of queries
between engines, or between server and client-side execution models. The same caveat applies to
the label service using wikibase: label, the use of which was removed from the queries for the
experiments, but that would suffer from the same problem if left in.

4. Conclusions

Within this work, we demonstrated the feasibility of executing Wikidata query federations client-side,
avoiding the use of manual source assignments via SERVICE clauses, as a means to ease the composition
of queries taking advantage of data present in multiple SPARQL endpoints. This virtual integration
allows for easier use of the data, by reducing the amount of knowledge needed of its distribution, and
by reducing the complexity of the queries themselves through the removal of SERVICE clauses, unions,
and the associated bindings workarounds.

Through our experiments, we identified three major issues with our client-side federation approach:
the data volume, the server-side execution budget, and the use of custom behaviour for standard query
operations. Attempting to combine large volumes of data from two different endpoints may result in
the client-side engine exceeding its resource allocations, such as running out of memory. Although
this can be addressed through the use of bind join or nested loop join, to pass intermediate results
between endpoints to avoid downloading all of the original data locally, the overhead of additional
HTTP requests from applying these join algorithms can in turn cause queries to time out, or risk
running into server-side request rate limits, the latter of which imposes the greater challenge for future
work. The Wikidata SPARQL endpoints perform rate-limiting using a query execution budget, which
can not be addressed by simple request rate limiters, and would require the client-side query engine to
track the available budget client-side, and split the queries into manageable chunks to be sent to the
server. For example, a single query chunk should execute within 60 seconds, but the engine should also
avoid sending too many short queries per minute, or else the total execution time limit of 60 seconds
every 60 seconds would be reached. Although the balancing of trade-offs between server-side and
client-side execution have previously been investigated in the context of Triple Pattern Fragments
(TPF) [15], such work introduced an entirely new interface type on an axis between data dumps and
SPARQL endpoints, and perhaps such fragmentation could be avoided through the use of additional

federation algorithms. Additionally, any server-side custom handling of standard SPARQL operations
would need to be replicated client-side for all queries to execute.

Despite these challenges, there were several queries that successfully finished with correct results
using client-side federation. This demonstrates the feasibility of client-side execution for some queries,
and motivates future research into the direction of budget-aware rate-limiting and query partitioning,
to help ensure clients adhere to server-side limits beyond simple request rates. Additional techniques
should also be investigated to assist client-side engines in combining large volumes of data from multiple
endpoints, without running into system resource limitations or being bottlenecked by excessive network
requests.

Acknowledgments

This work was supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF project VV023/10),
as well as the CHIST-ERA grant TRIPLE (CHIST-ERA-22-ORD-09). Elias Crum is a PhD fellow of the
Research Foundation — Flanders (FWO) (1S27825N). Ruben Taelman is a postdoctoral fellow of the
Research Foundation — Flanders (FWO) (1202124N).

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation, W3C, 2013.
https://www.w3.0org/TR/2013/REC-sparql11-query-20130321/.

[2] L.Feigenbaum, G. T. Williams, K. G. Clark, E. Torres, SPARQL 1.1 Protocol, W3C Recommendation,
W3C, 2013. https://www.w3.0org/TR/2013/REC-sparql11-protocol-20130321/.

[3] B. Quilitz, U. Leser, Querying distributed RDF data sources with SPARQL, in: Proceedings of the
5th European Semantic Web Conference, 2008, pp. 524-538.

[4] O. Hartig, C. Bizer, J.-C. Freytag, Executing SPARQL Queries over the Web of Linked Data, in:
Proceedings of the 8th International Semantic Web Conference, 2009, pp. 293-309.

[5] A.Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, FedX: Optimization Techniques for
Federated Query Processing on Linked Data, in: Proceedings of the 10th International Semantic
Web Conference, 2011, pp. 601-616.

[6] A.Charalambidis, A. Troumpoukis, S. Konstantopoulos, SemaGrow: Optimizing Federated SPARQL
queries, in: Proceedings of the 11th International Conference on Semantic Systems, 2015, pp.
121-128.

[7] G.Ladwig, T. Tran, Linked Data Query Processing Strategies, in: Proceedings of the 9th Interna-
tional Semantic Web Conference, 2010, pp. 453-469.

[8] A.Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, J. Umbrich, Data Summaries for On-
Demand Queries over Linked Data, in: Proceedings of the 19th International Conference on World
Wide Web, 2010, pp. 411-420.

[9] R. Cyganiak, K. Alexander, J. Zhao, M. Hausenblas, Describing Linked Datasets with the VoID
Vocabulary, W3C Note, W3C, 2011. https://www.w3.0rg/TR/2011/NOTE-void-20110303/.

[10] S. Hagedorn, K. Hose, K.-U. Sattler, J. Umbrich, Resource Planning for SPARQL Query Execution
on Data Sharing Platforms, in: Proceedings of the 5th International Conference on Consuming
Linked Data, 2014, pp. 49-60.

[11] O. Hartig, M. T. Ozsu, Walking without a Map: Ranking-Based Traversal for Querying Linked
Data, in: Proceedings of the 15th International Semantic Web Conference, 2016, pp. 305-324.

[12] O. Gorlitz, S. Staab, SPLENDID: SPARQL Endpoint Federation Exploiting VoID Descriptions, in:
Proceedings of the 2nd International Conference on Consuming Linked Data, 2011, pp. 13-24.

[13] R. Taelman, J. Van Herwegen, M. Vander Sande, R. Verborgh, Comunica: A Modular SPARQL
Query Engine for the Web, in: Proceedings of the 17th International Semantic Web Conference,
2018, pp. 239-255.

[14] L. M. Haas, D. Kossmann, E. L. Wimmers, J. Yang, Optimizing Queries across Diverse Data Sources
(1997) 276-285.

[15] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester, G. Hae-
sendonck, P. Colpaert, Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the
Web, Journal of Web Semantics 37 (2016) 184—206.

	1 Introduction
	2 Experiments
	3 Results
	4 Conclusions

