
Link Traversal over Decentralised Environments
using Restart-Based Query Planning

Jonni Hanski, Simon Van Braeckel, Ruben Taelman, and Ruben Verborgh

IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract. With the emergence of decentralisation initiatives to address
various issues around regulatory compliance and barriers of entry to data-
driven markets, data access abstraction layers in the form of query engines
are needed to assist in developing services on top of such environments.
Prior work, however, has demonstrated significant network overhead dur-
ing data retrieval in traversal-based query execution over decentralised
Linked Data sources, dwarfing the relative impact of local processing and
query optimisations. Certain decentralisation initatives, however, offer an
environment with seemingly sufficient structure to address this, allowing
client-side query engines to attain measurable performance improvements
through local optimisations. One example is the Solid initiative, offering
distributed well-defined user data stores, helping traversal-based query
execution approaches in efficiently locating and accessing query-relevant
data. Within this work, we demonstrate the impact of client-side adaptive
query planning optimisations within structured distributed environments,
using the Solid ecosystem as an example, to highlight the potential for
tangible improvements in traversal-based execution. Through the imple-
mentation of a restart-based query planning technique, we achieve average
query execution time reductions of up to 36% compared to a baseline of
unchanged query plan execution. Conversely, we also demonstrate how
such techniques, when applied without robust cost-benefit estimation,
can effectively double the query execution time. This illustrates the im-
portance and potential of client-side techniques even in such distributed
environments, and highlights the importance of further investigation in
the direction of these techniques.

1 Introduction

With the emergence of various decentralisation initiatives to address challenges
around centralised data storage solutions, ranging from privacy-related legislation
to barriers to entry for a given data-driven market, there is also the emerging need
for query engine-based abstraction layers to assist developers in creating services
on top of such distributed environments, allowing them to write declarative
queries to extract the data they need, without having to be aware of the details of
its distribution. Thus, the discovery, acquisition and processing of data becomes
the reponsibility of the query engine, and for interactive user-facing applications,
the engine has to perform these tasks with sufficient user-perceived performance
to make such solutions viable in practice [16].

2 Jonni Hanski, Simon Van Braeckel, Ruben Taelman, and Ruben Verborgh

The challenges around data discovery can be addressed through Link Traversal
Query Processing (LTQP) [11]. However, even with the varous heuristics of zero-
knowledge query planning [10], the lack of prior knowledge of the data being
queried over may result in suboptimal query plans [18]. And even though the
relative impact of the query plan, as compared to the cost of data access over
network, may be marginal in some environments [13], in more structured ones it
has been shown to be significant [18], with potential for theoretically halving the
total execution time. Thus, additional adaptive query processing [7] techniques
should be explored, for the purposes of adapting the initial plan or its execution
to runtime conditions based on feedback, to reach more optimal query plans.

Within this work, we have chosen to employ a client-side restart-based query
planning technique over a Solid environment [19], to investigate the impact of
adaptive techniques on client-side query processing even in distributed environ-
ments with data access overhead, such as with link traversal query execution.

The remainder of this paper is structured as follows. Section 2 briefly dis-
cusses related work, followed by Section 3 introducing our research question
and hypotheses, as well as Section 4 outlining our approach to tackling them.
Section 5 explains our experiments, followed by the results in Section 6. The
paper is concluded by our conclusions in Section 7.

2 Related Work

Through widespread adoption of the Linked Data principles, the World Wide
Web enables a globally distributed dataspace in the form of the Web of Linked
Data [12,13]. The traversal-based query execution technique [11,10,13], building
upon these principles, allows for evaluation of queries over Linked Data using
a follow-your-nose approach to traversing URIs. This technique allows a query
engine to evaluate a SPARQL query over an increasing number of data sources
on the Web of Linked Data by intertwining triple pattern matching with link
traversal to discover query-relevant data sources on-the-fly [12]. With such a
traversal approach, the cost of data retrieval over the network has been shown to
marginalise the cost of locally processing that data [13].

Constrained and well-defined data access environments, however, have been
shown to increase the relative impact of query planning [18]. The Solid initia-
tive [19] offers one such environment. The initiative seeks to offer individuals
greater control over their own data, by storing it in user-controlled permissioned
datastores, referred to as pods, encouraging and facilitating the reuse of personal
data. Notably, pods expose their contents following a set of specifications such as
the Solid protocol [3], to assist query engines in data discovery. For this reason, we
have chosen Solid as the basis for our experiments, and the SolidBench benchmark
for the evaluation to align with existing work.

To take advantage of information discovered during query execution, to
overcome limitations imposed by insufficient or inaccurate information on the
planning phase, an adaptive query processing technique can be used [7]. Such
approaches have been categorised as either inter-query adaptivity for changes

Link Traversal using Restart-Based Query Planning 3

between executions, or intra-query adaptivity for changes during execution.
Although inter-query techniques are deemed easier to incorporate into existing
optimise-then-execute processes, they essentially require executing similar queries
over similar data to be able to take advantage of the information acquired [7].
This has been demonstrated through the use of a theoretical oracle in prior
work [18], to achieve up to double the query performance of zero-knowledge query
planning. Intra-query techniques, on the other hand, aim to take advantage of
information as it is discovered during the execution of a query plan. Among such
approaches are postponing of plan selection to runtime [4], as well as various
operator-internal approaches, for example to allow modifying join operations [6].
Within this work, we demonstrate the potential of intra-query techniques using a
restart-based approach detailed in Section 4.

The approaches employed within this work rely on selectivity or cardinality
estimates of triple patterns to determine the join plan between them, in an effort
to minimise the number of intermediate results. Although centralised storage
solutions are often capable of pre-computing such information or providing
estimates efficiently, such as through the use of characteristics sets [14], within
decentralised scenarios this may not always be the case. Thus, various purpose-
built estimation techniques have to be applied, such as variable counting [15] that
estimates the relative selectivities of triple patterns using the type and number of
unbound components. Other approaches, such as the set of formulae by Hagedorn
et al. [9], make use of the statistics offered in dataset descriptions published using
the Vocabulary of Interlinked Datasets (VoID) [5]. Within this work, we have
chosen to employ a variable counting approach due to its lack of preconditions, as
well as the formulae from Hagedorn et al. due to their suitability for decentralised
scenarios with VoID metadata available.

3 Research Question

The purpose of this work is to explore the relative impact of applying client-side
adaptive query processing techniques in traversal-based query execution within
decentralised environments where data access costs do not dwarf the impact of
the query plan, such as with Solid. We use a restart-based approach for this
purpose, evaluating the current query plan and restarting it if the plan would
differ based on information available during the evaluation. The following research
question serves as the basis for our work:

Question 1. Can overall query performance be improved through the application
of client-side adaptive techniques, compared to heuristics-based zero-knowledge
query planning?

We derived the following hypotheses to answer this research question:

Hypothesis 1. Compared to a heuristic zero-knowledge query planning technique,
a restart-based planning approach produces the first and last result faster, and
achieves lower total execution time.

4 Jonni Hanski, Simon Van Braeckel, Ruben Taelman, and Ruben Verborgh

Hypothesis 2. Performing plan evaluation and optional restart after uniform
amount of execution time for all queries will result in lower performance than
baseline for at least a third of the queries.

Hypothesis 3. Performing plan evaluation and optional restart only upon cardi-
nality estimate updates will result in better performance for all queries.

This research question and hypotheses are addressed through a practical
implementation and experiments described below.

4 Approach to Client-Side Adaptive Optimisation

We employ an operator-internal technique to restart query plans from the begin-
ning during pipelined query execution, where bindings pass through the query
plan one by one as they are produced and consumed by the operators, with our
wrapper operator encapsulating the query plan by acting as the topmost join in
the tree of joins of any kind realised by their corresponding physical operators
that forms the body of the query plan. This wrapper, illustrated in Fig. 1, is
responsible for i) evaluating at the chosen intervals whether the current query
plan is still optimal or not, and ii) restarting the encapsulated query plan when
the current one no longer appears optimal.

Fig. 1. Once a different plan is produced based on updated cardinalities (TP2, TP3),
the wrapper transparently restarts the query plan.

The query plan wrapper operates under bag semantics, under the assumption
that a plan, when restarted, produces its full output again from the beginning. The
wrapper internally keeps track of all output produced by the plan it encapsulates.
Upon restarting the plan, the wrapper uses this record to discard previously
produced output, avoiding any spurious duplicates. This record is maintained
fully in memory, although practical solutions should consider flushing it to disk
as with agjoin [1].

Alongside restarting the query plan, the wrapper operator is also responsible
for evaluating the optimality of the chosen plan, by comparing it against a
hypothetical plan that would be chosen by the query engine at the time of the

Link Traversal using Restart-Based Query Planning 5

evaluation, given the triple pattern cardinalities available at that moment. If the
two plans differ, the wrapper performs the join plan restart, but if they remain
identical, then it continues the current execution. The wrapper can be configured
to perform its join plan evaluation using two different approaches:

1. Timeout-based : When the join plan is initially started, the wrapper sets a
timeout. After this timeout, the join plan evaluation is carried out once.

2. Change-based : Every time the cardinality estimate of a triple pattern is
updated, the join plan evaluation is carried out.

The join plan evaluation relies on cardinality information on triple patterns
being updated as new information becomes available. If the cardinality information
does not change, the evaluation will produce the same plan every time, and the
experiments would be identical. Ideally, any new cardinality estimate would be
closer to the true cardinality value known only at the end of the processing.
Within this work, we have chosen to employ the following three cardinality
estimation techniques:

1. A variable counting-based approach, that estimates the relative selectivities
of triple patterns and creates a join plan based on these. The initial plan is
always created using this approach.

2. A VoID-based approach, that uses the VoID dataset descriptions of the Solid
pods to estimate the cardinality of that triple pattern using the formulae
from Hagedorn et al. [9].

3. A simplified VoID-based approach, that functions like approach 2, but assumes
the cardinality of a triple pattern to equal the predicate occurrence count.

5 Experiment Setup

The approaches discussed in Section 4 were implemented in Comunica [17], a
modular SPARQL query engine framework that provides a baseline link traversal
implementation, also previously used to benchmark the relative impact of query
plans compared to network overhead in related work [18]. Our implementation is
available as open source1. Through changes in the query engine configuration,
we set up the following test cases to measure the impact of our approaches:

– Baseline, as the default configuration of the engine without any of our
implementation, doing link traversal with zero-knowledge query planning.

– Overhead , with VoID description parsing and cardinality estimation logic in
place, but no query plan evaluation or restarts. This measures the overhead
introduced by our implementation.

– Timeout , identical to the overhead test, but with query plan evaluation taking
place once after a set timeout value.

– Cardinality , identical to the overhead test, but with query plan evaluation and
potential restart taking place every time the cardinality estimate is updated.

1 https://github.com/surilindur/comunica-components

6 Jonni Hanski, Simon Van Braeckel, Ruben Taelman, and Ruben Verborgh

The dataset and queries were generated using SolidBench2, a benchmark to
simulate a distributed social network use case across Solid pods using the LDBC
SNB social network dataset [8]. To support the cardinality estimation, VoID
descriptions were generated for each pod.

The experiments were all executed on the same virtual machine, with the
server and query engine client running locally, using the jbr.js3 [18] benchmark
runner tool. Query timeout was set to 120 seconds following the example set
by prior work [18], causing all queries from the complex templates to time out,
likewise aligning with such prior work, leaving a total of 75 queries to execute
for each configuration. The experiments and our results are available online4 for
reproducibility and validation.

6 Results and Discussion

Beyond query execution time, there was significant variance in the result arrival
rates. To capture these differences, we employ the diefficiency metrics [2], namely
dief@k. The dief@k value is the integral of result arrivals recorded as a function of
time, from the time of 0 results to the time of having produced k results. For our
comparison, we have chosen to set k to the total number of results for each query,
producing the diefficiency value at 100% result completeness. Lower diefficiency
values are considered better for the same query with the same results.

From Table 1, one can observe how even the baseline was unable to successfully
execute all queries within the allocated timeframe. Thus, we omit these timed-out
queries from further analysis. Furthermore, with 63% of queries producing all
their results under 5 seconds, and 82% producing them under 20 seconds, the
20-second restart timeout configurations do almost nothing to most of the queries.
Additionally, the overhead of the implementation itself appears negligible, and
the formulae from Hagedorn et al. perform overall best for cardinality estimation.

The timeout-based approach produced the last result 9–84% slower, but
exhibited 64% better diefficiency for queries performing better than baseline.
This leads us to accept Hypothesis 2, with a uniform timeout clearly not working
for all queries. Evaluating join plans upon cardinality estimate updates produced
anywhere between 63% better and 245× worse diefficiency, or 36% lower and
73% higher query execution time. The last result was likewise produced anywhere
between 37% faster and 78% slower than the baseline. For the queries performing
better than baseline, diefficiency improvements of 40–63% could be observed.
Thus, we reject Hypothesis 3 due to update-based restarts not being universally
beneficial, but accept Hypothesis 1 due to tangible improvements attainable.

2 https://github.com/SolidBench/SolidBench.js
3 https://github.com/rubensworks/jbr.js
4 https://github.com/surilindur/comunica-experiments

Link Traversal using Restart-Based Query Planning 7

First Last Query Below Above Average dief@k dief@k Queries Average
Configuration result result duration baseline baseline dief@k decrease increase finished restarts
1 baseline 7.4 9.5 10.5 0% 0% 23.9 0% 0% 51/75 0.0
2 overhead 8.5 9.9 11.2 43% 54% 22.7 33% 156% 46/75 0.0
3 overhead simple 8.3 9.1 10.5 38% 60% 24.5 41% 123% 42/75 0.0
4 cardinality once 9.4 10.8 11.9 57% 41% 17.2 47% 3,253% 49/75 0.8
5 cardinality once void 4.6 6.4 7.3 39% 59% 19.4 40% 1,878% 44/75 0.9
6 cardinality once void simple 13.0 17.0 18.2 93% 5% 37.9 44% 22,744% 43/75 0.8
7 cardinality unlimited 8.2 9.3 10.5 71% 27% 18.2 63% 2,660% 48/75 2.2
8 cardinality unlimited void 4.6 6.0 6.8 50% 48% 15.2 52% 808% 42/75 1.3
9 cardinality unlimited void simple 7.7 9.7 11.1 93% 5% 22.9 52% 24,555% 41/75 1.3

10 timeout 100 6.8 10.7 13.4 89% 11% 110.2 37% 189% 36/75 1.1
11 timeout 100 void 5.6 10.5 13.8 72% 28% 173.6 40% 196% 32/75 1.0
12 timeout 100 void simple 9.8 17.3 21.1 35% 65% 183.4 49% 403% 31/75 0.9
13 timeout 1,000 9.7 14.5 17.6 17% 83% 144.1 64% 231% 29/75 0.7
14 timeout 1,000 void 5.9 10.6 13.2 61% 39% 138.4 47% 212% 33/75 0.9
15 timeout 1,000 void simple 10.5 17.5 20.6 71% 29% 163.9 62% 503% 34/75 0.8
16 timeout 2,000 9.3 13.4 15.8 71% 26% 77.2 49% 190% 34/75 0.6
17 timeout 2,000 void 7.4 13.9 16.3 22% 75% 112.3 48% 392% 36/75 0.8
18 timeout 2,000 void simple 8.1 15.1 18.3 26% 74% 167.6 50% 326% 35/75 0.7
19 timeout 5,000 10.6 16.2 18.5 17% 80% 140.3 50% 465% 35/75 0.5
20 timeout 5,000 void 8.4 14.3 17.1 73% 24% 140.1 44% 317% 37/75 0.6
21 timeout 5,000 void simple 8.5 15.4 17.9 65% 35% 181.9 53% 347% 37/75 0.4
22 timeout 10,000 8.7 12.7 14.9 18% 77% 119.1 40% 9,850% 44/75 0.4
23 timeout 10,000 void 9.4 13.5 17.5 18% 78% 91.7 40% 3,442% 45/75 0.4
24 timeout 10,000 void simple 9.7 15.1 17.8 22% 78% 149.2 41% 325% 37/75 0.4
25 timeout 20,000 7.0 10.4 14.6 69% 25% 94.3 24% 12,381% 51/75 0.2
26 timeout 20,000 void 9.1 13.4 17.8 0% 0% 124.1 37% 13,497% 49/75 0.3
27 timeout 20,000 void simple 10.3 16.2 20.0 24% 74% 141.8 32% 386% 38/75 0.3

Table 1. Overview of the benchmark results for different configurations: average time
taken to produce the first and last result (s), average total query duration (s), average
dief@k when k is the total number of results, the share of finished queries for which
dief@k was below or above the baseline, the average decrease or increase of that metric
relative to baseline for those queries respectively, as well as the he number of queries
finished successfully and the average number of join restarts per query execution.

7 Conclusions

In related work [18], the theoretical impact of better query planning was shown.
In our work, we proved this theory using a restart-based query planning approach,
and achieved average reductions of up to 36% in query execution time. Our results
show that client-side approaches are instrumental in achieving the levels of query
performance needed for real-world interactive applications over decentralised
environments such as Solid. This brings us a step closer towards addressing
the challenges around privacy and data management at scale, and to lower the
barriers of entry to the data-driven market.

Acknowledgements. The described research activities were supported by
SolidLab Vlaanderen (Flemish Government, EWI and RRF project VV023/10).
Ruben Taelman is a postdoctoral fellow of the Research Foundation – Flanders
(FWO) (1202124N).

References

1. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for sparql endpoints. In: International Semantic
Web Conference. pp. 18–34 (2011)

8 Jonni Hanski, Simon Van Braeckel, Ruben Taelman, and Ruben Verborgh

2. Acosta, M., Vidal, M.E., Sure-Vetter, Y.: Diefficiency metrics: measuring the
continuous efficiency of query processing approaches. In: International Semantic
Web Conference. pp. 3–19 (2017)

3. Capadisli, S., Berners-Lee, T., Verborgh, R., Kjernsmo, K.: Solid pro-
tocol 0.10.0. W3C community group technical report, W3C (2022),
https://solidproject.org/TR/2022/protocol-20221231

4. Cole, R.L., Graefe, G.: Optimization of dynamic query evaluation plans. In: ACM
SIGMOD international conference on Management of data. pp. 150–160 (1994)

5. Cyganiak, R., Alexander, K., Zhao, J., Hausenblas, M.: Describing
linked datasets with the VoID vocabulary. W3C note, W3C (2011),
https://www.w3.org/TR/2011/NOTE-void-20110303/

6. Deshpande, A., Hellerstein, J.M.: Lifting the burden of history from adaptive query
processing. In: International conference on Very large databases. pp. 948–959 (2004)

7. Deshpande, A., Ives, Z., Raman, V., et al.: Adaptive query processing. Foundations
and Trends in Databases 1(1), 1–140 (2007)

8. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,
M.D., Boncz, P.: The ldbc social network benchmark: Interactive workload. In:
PACM SIGMOD International Conference on Management of Data. pp. 619–630
(2015)

9. Hagedorn, S., Hose, K., Sattler, K.U., Umbrich, J.: Resource planning for sparql
query execution on data sharing platforms. In: 5th International Conference on
Consuming Linked Data. pp. 49–60 (2014)

10. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In: Extended Semantic Web Conference. pp. 154–
169 (2011)

11. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of
linked data. In: International Semantic Web Conference. pp. 293–309 (2009)

12. Hartig, O., Langegger, A.: A database perspective on consuming linked data on
the web. Datenbank-Spektrum 10, 57–66 (2010)

13. Hartig, O., Özsu, M.T.: Walking without a map: optimizing response times
of traversal-based linked data queries (extended version). arXiv preprint
arXiv:1607.01046 (2016)

14. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation
for rdf queries with multiple joins. In: 2011 IEEE 27th International Conference on
Data Engineering. pp. 984–994 (2011)

15. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: 17th international
conference on World Wide Web. pp. 595–604 (2008)

16. Taelman, R.: Towards applications on the decentralized web using hypermedia-
driven query engines. ACM SIGWEB Newsletter (Oct 2024)

17. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: A
Modular SPARQL Query Engine for the Web. In: International Semantic Web
Conference. pp. 239–255 (2018)

18. Taelman, R., Verborgh, R.: Link traversal query processing over decentralized envi-
ronments with structural assumptions. In: International Semantic Web Conference.
pp. 3–22 (2023)

19. Verborgh, R.: Re-decentralizing the web, for good this time. In: Linking the World’s
Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web, pp.
215–230 (2023)

	Link Traversal over Decentralised Environments using Restart-Based Query Planning

