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Abstract.

When benchmarking rRpF data management systems such as public transport route planners, system evaluation needs to happen
under various realistic circumstances, which requires a wide range of datasets with different properties. Real-world datasets are
almost ideal, as they offer these realistic circumstances, but they are often hard to obtain and inflexible for testing. For these
reasons, synthetic dataset generators are typically preferred over real-world datasets due to their intrinsic flexibility. Unfortunately,
many synthetic dataset that are generated within benchmarks are insufficiently realistic, raising questions about the generalizability
of benchmark results to real-world scenarios. In order to benchmark geospatial and temporal RpF data management systems such
as route planners with sufficient external validity and depth, we designed popiGa, a highly configurable generation algorithm for
synthetic public transport datasets with realistic geospatial and temporal characteristics comparable to those of their real-world
variants. The algorithm is inspired by real-world public transit network design and scheduling methodologies. This article discusses
the design and implementation of PopiGG and validates the properties of its generated datasets. Our findings show that the generator
achieves a sufficient level of realism, based on the existing coherence metric and new metrics we introduce specifically for the
public transport domain. Thereby, popiGG provides a flexible foundation for benchmarking rRpF data management systems with

geospatial and temporal data.
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1. Introduction

The Resource Description Framework (rRDF) and
Linked Data technologies enable distributed use and
management of semantic data models [1116]]. Datasets
with an interoperable domain model can be stored
and queried by different data owners in different ways.
In order to discover the strengths and weaknesses of
different storage and querying possibilities, data-driven
benchmarks with different sizes of datasets and varying
characteristics can be used.

Regardless of whether existing data-driven bench-
marks use real or synthetic datasets, the external va-
lidity of their results can be too limited, which makes

a generalization to other datasets difficult. Real datasets,
on the one hand, are often only scarcely available for
testing, and only cover very specific scenarios, such that
not all aspects of systems can be assessed. Synthetic
datasets, on the other hand, are typically generated by
mimicking algorithms [[7,21129,30], which are not al-
ways sufficiently realistic [[15]. Features that are relevant
for real-world datasets may not be tested. As such, con-
clusions drawn from existing benchmarks do not always
apply to the envisioned real-world scenarios. One way
to get the best of both worlds is to design mimicking
algorithms that generate realistic synthetic datasets.
The public transport domain provides data with both
geospatial and temporal properties, which makes this
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an especially interesting source of data for benchmark-
ing. Its representation as Linked Data is valuable be-
cause i) of the many shared entities, such as stops,
routes and trips, across different existing datasets on the
Web. ii) These entities can be distributed over different
datasets and iii) benefit from interlinking for the im-
provement of discoverability. Synthetic public transport
datasets are particularly important and needed in cases
where public transport route planning algorithms are
evaluated. The Linked Connections framework [[10] and
Connection Scan Algorithm [14] are examples of such
public transport route planning systems. Because of the
limited availability of real-world datasets with desired
properties, these systems were evaluated with only a
very low number of datasets, respectively one and three
datasets. A synthetic public transport dataset generator
would make it easier for researchers to include a higher
number of realistic datasets with various properties in
their evaluations, which would be beneficial to the dis-
covery of new insights from the evaluations. Network
size, network sparsity and temporal range are examples
of such properties, and different combinations of them
may not always be available in real datasets, which
motivates the need for generating synthetic, but realistic
datasets with these properties.

Not only are public transport datasets useful for bench-
marking route planning systems, they are also highly
useful for benchmarking geospatial [[22)5] and temporal
RDF systems [3l23[] due to the intrinsic geospatial and
temporal properties of public transport datasets. While
synthetic dataset generators already exist in the geospa-
tial and temporal domain [[17424]], no systems exist yet
that focus on realism, and specifically look into the gen-
eration of public transport datasets. As such, the main
topic that we address in this work, is solving the need
for realistic public transport datasets with geospatial
and temporal characteristics, so that they can be used to
benchmark RDF data management and route planning
systems. More specifically, we introduce a mimicking
algorithm for generating realistic public transport data,
which is the main contribution of this work.

We observed a significant correlation between trans-
port networks and the population distributions of their
geographical areas, which is why population distribu-
tions are the driving factor within our algorithm. The
cause of this correlation is obvious, considering trans-
port networks are frequently used to transport people,
but other — possibly independent — factors exist that
influence transport networks as well, like certain points
of interest such as tourist attractions and shopping areas.
Our algorithm is subdivided into five sequential steps,

inspired by existing methodologies from the domains of
public transit planning [20] as a means to improve the
realism of the algorithm’s output data. These steps in-
clude the creation of a geospatial region, the placement
of stops, edges and routes, and the scheduling of trips.
We provide an implementation of this algorithm, with
different parameters to configure the algorithm. Finally,
we confirm the realism of datasets that are generated by
this algorithm using the existing generic structuredness
metric [[15] and new metrics that we introduce, which
are specific to the public transport domain. The notable
difference of this work compared to other synthetic
dataset generators is that our generation algorithm spe-
cializes in generating public transit networks, while
other generators either focus on other domains, or aim
to be more general-purpose. Furthermore, our algo-
rithm is based on population distributions and existing
methodologies from public transit network design.

In the next section, we introduce the related work
on dataset generation, followed by the background on
public transit network design, and transit feed formats
in Section 3] In Section [ we introduce the main re-
search question and hypothesis of this work. Next, our
algorithm is presented in Section [3] followed by its
implementation in Section[6] In Section[7] we present
the evaluation of our implementation, followed by a
discussion and conclusion in Section [§ and Section

2. Related Work

In this section, we present the related work on spa-
tiotemporal and RDF dataset generation,

Spatiotemporal database systems store instances that
are described using an identifier, a spatial location and
a timestamp. In order to evaluate spatiotemporal index-
ing and querying techniques with datasets, automatic
means exist to generate such datasets with predictable
characteristics [26].

Brinkhoff [8] argues that moving objects tend to fol-
low a predefined network. Using this and other state-
ments, he introduces a spatiotemporal dataset generator.
Such a network can be anything over which certain
objects can move, ranging from railway networks to
air traffic connections. The proposed parameter-based
generator restricts the existence of the spatiotemporal
objects to a predefined time period [fmin, fmax). It is
assumed that each edge in the network has a maximum
allowed speed and capacity over which objects can
move at a certain speed. The eventual speed of each
object is defined by the maximum speed of its class, the
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maximum allowed speed of the edge, and the congestion
of the edge based on its capacity. Furthermore, external
events that can impact the movement of the objects,
such as weather conditions, are represented as temporal
grids over the network, which apply a decreasing factor
on the maximum speed of the objects in certain areas.
The existence of each object that is generated starts at
a certain timestamp, which is determined by a certain
function, and dies when it arrives at its destination. The
starting node of an object can be chosen based on three
approaches:
dataspace-oriented approaches Selecting the nearest
node to a position picked from a two-dimensional
distribution function that maps positions to nodes.

region-based approaches Improvement of the data-
space oriented approach where the data space is
represented as a collection of cells, each having
a certain chance of being the place of a starting
node.

network-based approaches Selection of a network

node based on a one-dimensional distribution func-

tion that assigns a chance to each node.
Determining the destination node using one of these
approaches leads to non-satisfying results. Instead, the
destination is derived from the preferred length of a
route. Each route is determined as the fastest path to a
destination, weighed by the external events. Finally, the
results are reported as either textual output, insertion into
adatabase or a figure of the generated objects. Compared
to our work, this approach assumes a predefined network,
while our algorithm also includes the generation of the
network. For our work, we reuse the concepts of object
speed and region-based node selection with relation to
population distributions.

In order to improve the testability of Information
Discovery Systems, a generic synthetic dataset genera-
tor [25] was developed that is able to generate synthetic
data based on declarative graph definitions. This graph
is based on objects, attributes and relationships between
them. The authors propose to generate new instances,
such as people, based on a set of dependency rules. They
introduce three types of dependencies for the generation
of instances:
independent Attribute values that are independent of

other instances and attributes.

intra-record (horizontal) dependencies Attribute val-
ues depending on other values of the same instance.

inter-record (vertical) dependencies Relationships
between different instances.

Their engine is able to accept such dependencies as part
of a semantic graph definition, and iteratively create new
instances to form a synthetic dataset. This tool however
outputs non-RDF CSV files, which makes it impossible
to directly use this system for the generation of public
transport datasets in RDF using existing ontologies. For
our public transport use case, individual entities such
as stops, stations and connections would be possible to
generate up to a certain level using this declarative tool.
However, due to the underlying relation to population
distributions and specific restrictions for resembling
real datasets, declarative definitions are too limited.

The need for benchmarking rRpF data management
systems is illustrated by the existence of the Linked
Data Benchmark Council [2]] and the nossril| H2020
EU project for benchmarking of Big Linked Data. RDF
benchmarks are typically based on certain datasets
that are used as input to the tested systems. Many of
these datasets are not always very closely related to
real datasets [[15)], which may result in conclusions
drawn from benchmarking results that do not translate
to system behaviours in realistic settings.

Duan et al. [15] argue that the realism of an RDF
dataset can be measured by comparing the structured-
ness of that dataset with a realistic equivalent. The
authors show that real-world datasets are typically less
structured than their synthetic counterparts, which can
results in significantly different benchmarking results,
since this level of structuredness can have an impact
on how certain data is stored in RDF data management
systems. This is because these systems may behave
differently on datasets with different levels of struc-
turedness, as they can have certain optimizations for
some cases. In order to measure this structuredness, the
authors introduce the coherence metric of a dataset D
with a type system 7 that can be calculated as follows:

CH(T, D) = Z WT(CV(T, D)) *CV(T, D) (1)
VT eT

The type system 7 contains all the RDF types that are
present in a dataset. CV (T, D) represents the coverage
of a type T in a dataset D, and is calculated as the frac-
tion of type instances that set a value for all its properties.
The factor WT(CV(T, D)) is used to weight this sum,
so that the coherence is always a value between 0 and 1,
with 1 representing a perfect structuredness. A maximal
coherence means that all instances in the dataset have
values for all possible properties in the type system,

I 'http://project-hobbit.eu/
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which is for example the case in relational databases
without optional values. Based on this metric, the au-
thors introduce a generic method for creating variants
of real datasets with different sizes while maintaining a
similar structuredness.The authors describe a method
to calculate the coverage value of this dataset, which
has been implemented as a procedure in the Virtuoso
RDF store [30]. As the goal of our work is to generate
realistic RDF public transport datasets, we will use this
metric to compare the realism of generated datasets with
real datasets. As this high-level metric is used to define
realism over any kind of rRDF dataset, we will introduce
new metrics to validate the realism for specifically the
case of public transport datasets.

3. Public Transit Background

In this section, we present background on public
transit planning that is essential to this work. We discuss
existing public transit network planning methodologies
and formats for exchanging transit feeds.

3.1. Public Transit Planning

The domain of public transit planning entails the
design of public transit networks, rostering of crews,
and all the required steps inbetween. The goal is to
maximize the quality of service for passengers while
minimizing the costs for the operator. Given a public
demand and a topological area, this planning process
aims to obtain routes, timetables and vehicle and crew
assignment. A survey about 69 existing public transit
planning approaches shows that these processes are
typically subdivided into five sequential steps [20]:

1. route design, the placement of transit routes over

an existing network.

2. frequencies setting, the temporal instantiation of
routes based on the available vehicles and estimated
demand.

3. timetabling, the calculation of arrival and depar-
ture times at each stop based on estimated demand.

4. vehicle scheduling, vehicle assignment to trips.

5. crew scheduling and rostering, the assignment
of drivers and additional crew to trips.

In this paper, we only consider the first three steps for
our mimicking algorithm, which lead to all the required
information that is of importance to passengers in a
public transit schedule. We present the three steps from
this survey in more detail hereafter.

The first step, route design, requires the topology of
an area and public demand as input. This topology de-
scribes the network in an area, which contains possible
stops and edges between these stops. Public demand
is typically represented as origin-destination (OD) ma-
trices, which contain the number of passengers will-
ing to go from origin stops to destination stops. Given
this input, routes are designed based on the following
objectives [20]:
area coverage The percentage of public demand that

can be served.

route and trip directness A metric that indicates how
much the actual trips from passengers deviate from
the shortest path.

demand satisfaction How many stops are close
enough to all origin and destination points.

total route length The total distance of all routes,
which is typically minimized by operators.

operator-specific objectives Any other constraints the
operator has, for example the shape of the network.

historical background Existing routes may influence
the new design.
The next step is the setting of frequencies, which
is based on the routes from the previous step, public
demand and vehicle availability. The main objectives in
this step are based on the following metrics [20]:
demand satisfaction How many stops are serviced fre-
quently enough to avoid overcrowding and long
waiting times.

number of line runs How many times each line is ser-
viced — a trade-off between the operator’s aim for
minimization and the public demand for maximiza-
tion.

waiting time bounds Regulation may put restrictions
on minimum and maximum waiting times between
line runs.

historical background Existing frequencies may in-
fluence the new design.
The last important step for this work is timetabling,
which takes the output from the previous steps as input,
together with the public demand. The objectives for this
step are the following:
demand satisfaction Total travel time for passengers
should be minimized.

transfer coordination Transfers from one line to an-
other at a certain stop should be taken into account
during stop waiting times, including how many
passengers are expected to transfer.
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fleet size The total amount of available vehicles and
their usage will influence the timetabling possibili-
ties.

historical background Existing timetables may influ-
ence the new design.

3.2. Transit Feed Formats

The de-facto standard for public transport time sched-
ules is the General Transit Feed Specification (GTes)?
GTFs is an exchange format for transit feeds, using a se-
ries of csv files contained in a zrp file. The specification
uses the following terminology to define the rules for a
public transit system:

Stop is a geospatial location where vehicles stop and
passengers can get on or off, such as platform 3 in
the train station of Brussels.

Stop time indicates a scheduled arrival and departure
time at a certain stop.

Route is a time-independent collection of stops, de-
scribing the sequence of stops a certain vehicle
follows in a certain public transit line. For example
the train route from Brussels to Ghent.

Trip is a collection of stops with their respective stop
times, such as the route from Brussels to Ghent at
a certain time.
The z1p file is put online by a public transit operator, to
be downloaded by route planning [13] software. Two
models are commonly used to then extract these rules
into a graph [28]]. In a time-expanded model, a large
graph is modeled with arrivals and departures as nodes
and edges connect departures and arrivals together. The
weights on these edges are constant. In a time-dependent
model, a smaller graph is modeled in which vertices are
physical stops and edges are transit connections between
them. The weights on these edges change as a function
of time. In both models, Dijkstra and Dijkstra-based
algorithms can be used to calculate routes.

In contrast to these two models, the Connection Scan
Algorithm [14] takes an ordered array representation
of connections as input. A connection is the actual
departure time at a stop and an arrival at the next stop.
These connections can be given a URI, and described
using rRDF, using the Linked Connections [10] ontology.
For this base algorithm and its derivatives, a connection
object is the smallest building block of a transit schedule.

In our work, generated public transport networks
and time schedules can be serialized to both the GTFs

2 https://developers.google.com/transit/gtfs/

format, and rRDF datasets using the Linked Connections
ontology.

4. Research Question

In order to generate public transport networks and
schedules, we start from the hypothesis that both are
correlated with the population distribution within the
same area. More populated areas are expected to have
more nearby and more frequent access to public trans-
port, corresponding to the recurring demand satisfaction
objective in public transit planning [20]. When we cal-
culate the correlation between the distribution of stops
in an area and its population distribution, we discover
a positive correlationf’| of 0.439 for Belgium and 0.459
for the Netherlands, thereby validating our hypothesis
with a confidence of 99%. Because of the continuous
population variable and the binary variable indicating
whether or not there is a stop, the correlation is calcu-
lated using the point-biserial correlation coefficien{?]
For the calculation of these correlations, we ignored the
population value outliers. Following this conclusion,
our mimicking algorithm will use such population dis-
tributions as input, and derive public transport networks
and trip instances.

The main objective of a mimicking algorithm is to
create realistic data, so that it can be used to by bench-
marks to evaluate systems under realistic circumstances.
We will measure dataset realism in high-level by com-
paring the levels of structuredness of real-world datasets
and their synthetic variants using the coherence metric
introduced by Duan et al. [15]]. Furthermore, we will
measure the realism of different characteristics within
public transport datasets, such as the location of stops,
density of the network of stops, length of routes or the
frequency of connections. We will quantify these as-
pects by measuring the distance of each aspect between
real and synthetic datasets. These dataset characteristics
will be linked with potential evaluation metrics within
RDF data management systems, and tasks to evalu-
ate them. This generic coherence metric together with
domain-specific metrics will provide a way to evaluate
dataset realism.

Based on this, we introduce the following research
question for this work: “Can population distribution data
be used to generate realistic synthetic public transport

p-values in both cases < 0.00001
4 https://github.com/PoDiGG/podigg-evaluate/blob/
master/stats/correlation.r
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networks and scheduling?”” We provide an answer to this
question by first introducing an algorithm for generating
public transport networks and their scheduling based
on population distributions in Section[5] After that, we
validate the realism of datasets that were generated
using an implementation of this algorithm in Section 7}

5. Method

In order to formulate an answer to our research ques-
tion, we designed a mimicking algorithm that generates
realistic synthetic public transit feeds. We based it on
techniques from the domains of public transit planning,
spatiotemporal and rRDF dataset generation. We reuse the
route design, frequencies setting and timetabling steps
from the domain public transit planning, but prepend
this with a network generation phase.

Figure [I] shows the model of the generated public
transit feeds, with connections being the primary data
element. We consider different properties in this model
based on the independent, intra-record or inter-record
dependency rules [25]], as discussed in Section[2] The
arrival time in a connection can be represented as a
fully intra-record dependency, because it depends on
the time it departed and the stops it goes between. The
departure time in a connection is both an intra-record
and inter-record dependency, because it depends on the
stop at which it departs, but also on the arrival time of
the connection before it in the trip. Furthermore, the
delay value can be seen as an inter-record dependency,
because it is influenced by the delay value of the previous
connection in the trip. Finally, the geospatial location
of a stop depends on the location of its parent station,
so this is also an inter-record dependency. All other
unmentioned properties are independent.

In order to generate data based on these dependency
rules, our algorithm is subdivided in five steps:

1. Region: Creation of a two-dimensional area of
cells annotated with population density informa-
tion.

2. Stops: Placement of stops in the area.

. Edges: Connecting stops using edges.

4. Routes: Generation of routes between stops by
combining edges.

5. Trips: Scheduling of timely trips over routes by
instantiating connections.

These steps are not fully sequential, since stop generation
is partially executed before and after edge generation.
The first three steps are required to generate a network,

W

step 4 corresponds to the route design step in public
transit planning and step 5 corresponds to both the
frequencies setting and timetabling. These steps are
explained in the following subsections.

5.1. Region

In order to create networks, we sample geographic re-
gions in which such networks exist as two-dimensional
matrices. The resolution is defined as a configurable
number of cells per square of one latitude by one lon-
gitude. Network edges are then represented as links
between these cells. Because our algorithm is popu-
lation distribution-based, each cell contains a popula-
tion density. These values can either be based on real
population information from countries, or this can be
generated based on certain statistical distributions. For
the remainder of this paper, we will reuse the population
distribution from Belgium as a running example, as
illustrated in Figure[2]

5.2. Stops

Stop generation is divided into two steps. First, stops
are placed based on population values, then the edge
generation step is initiated after which the second phase
of stop generation is executed where additional stops
are created based on the generated edges.

Population-based For the initial placement of stops,
our algorithm only takes a population distribution as
input. The algorithm iteratively selects random cells
in the two-dimensional area, and tags those cells as
stops. To make it region-based [8], the selection uses a
weighted Zipf-like-distribution, where cells with high
population values have a higher chance of being picked
than cells with lower values. The shape of this Zipf curve
can be scaled to allow for different stop distributions
to be configured. Furthermore, a minimum distance
between stops can be configured, to avoid situations
where all stops are placed in highly population areas.

Edge-based Another stop generation phase exists af-
ter the edge generation because real transit networks
typically show line artifacts for stop placement. Fig-
ure [3a] shows the actual train stops in Belgium, which
clearly shows line structures. Stop placement after the
first generation phase results can be seen in Figure [3b]
which does not show these line structures. After the
second stop generation phase, these line structures be-
come more apparent as can be seen in Figure[3c] In this
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Figure 1. The resources (rectangle), literals (dashed rectangle) and properties (arrows) used to model the generated public transport data. Node and

text colors indicate vocabularies.

Figure 2. Heatmap of the population distribution in Belgium, which
is illustrated for each cell as a scale going from white (low), to red
(medium) and black (high). The actual placement of train stops are
indicated as green points.

Fig. a: Real stops with line structures Fig. b: Synthetic stops after the first
stop generation phase without line
structures.

Fig. c¢: Synthetic stops after the sec-
ond stop generation phase with line
structures.

Figure 3. Placement of train stops in Belgium, each dot represents
one stop.

e, e

Fig. a: Selecting a weighted ran- Fig. b: Defining an area around
dom point on the edge. the selected point.

LN

Fig. ¢: Choosing a random point
within the area, weighted by pop- Fig. d: Modify edges so that the
ulation value. path includes this new point.

Figure 4. Illustration of the second phase of stop generation where
edges are modified to include sufficiently populated areas in paths.

second stop generation phase, edges are modified so that
sufficiently populated areas will be included in paths
formed by edges, as illustrated by Figure ] Random
edges will iteratively be selected, weighted by the edge
length measured as Euclidian distancd’] On each edge, a
random cell is selected weighed by the population value
in the cell. Next, a weighed random point in a certain
area around this point is selected. This selected point is
marked as a stop, the original edge is removed and two
new edges are added, marking the path between the two
original edge nodes and the newly selected node.

5 The Euclidian distance based on geographical coordinates is
always used to calculate distances in this work.
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5.3. Edges

The next phase in public transit network generation
connects the stops that were generated in the previous
phase with edges. In order to simulate real transit net-
work structures, we split up this generation phase into
three sequential steps. In the first step, clusters of nearby
stops are formed, to lay the foundation for short-distance
routes. Next, these local clusters are connected with
each other, to be able to form long-distance routes. Fi-
nally, a cleanup step is in place to avoid abnormal edge
structures in the network.

Short-distance The formation of clusters with nearby
stations is done using agglomerative hierarchical clus-
tering. Initially, each stop is part of a seperate cluster,
where each cluster always maintains its centroid. The
clustering step will iteratively try to merge two clusters
with their centroid distance below a certain threshold.
This threshold will increase for each iteration, until a
maximum value is reached. The maximum distance
value indicates the maximum inter-stop distance for
forming local clusters. When merging two clusters, an
edge is added between the closest stations from the re-
spective clusters. The center location of the new cluster
is also recalculated before the next iteration.

Long-distance At this stage, we have several clusters
of nearby stops. Because all stops need to be reachable
from all stops, these separate clusters also need to be
connected. This problem is related to the domain of route
planning over public transit networks, in which networks
can be decomposed into smaller clusters of nearby
stations to improve the efficiency of route planning.
Each cluster contains one or more border stations [4]],
which are the only points through which routes can
be formed between different clusters. We reuse this
concept of border stations, by iteratively picking a
random cluster, identifying its closest cluster based on
the minimal possible stop distance, and connecting their
border stations using a new edge. After that, the two
clusters are merged. The iteration will halt when all
clusters are merged and there is only one connected
graph.

Cleanup The final cleanup step will make sure that the
number of stops that are connected by only one edge are
reduced. In real train networks, the majority of stations
are connected with at least more than one other stations.
The two earlier generation steps however generate a
significant number of loose stops, which are connected

o0

Fig.b: Connecting clusters through
Fig. a: Formation of local clusters border stations

Fig. ¢: Cleanup of loose stops

Figure 5. Example of the different steps in the edges generation
algorithm

with only a single other stop with a direct edge. In this
step, these loose stops are identified, and an attempt is
made to connect them to other nearby stops as shown
in Algorithm[I] For each loose stop, this is done by first
identifying the direction of the single edge of the loose
stop on line [§] This direction is scaled by the radius
in which to look for stops, and defines the stepsize for
the loop the starts on line [I0] This loop starts from the
loose stop and iteratively moves the search position in
the defined direction, until it finds a random stop in
the radius, or the search distance exceeds the average
distance of between the stops in the neighbourhood of
this loose stop. This random stop from line[I2]can be
determined by finding all stations that have a distance to
the search point that is below the radius, and picking a
random stop from this collection. If such a stop is found,
an edge is added from our loose stop to this stop.

Figure [5|shows an example of these three steps. After
this phase, a network with stops and edges is available,
and the actual transit planning can commence.

Generator Objectives The main guaranteed objective
of the edge generator is that the stops form a single
connected transit network graph. This is to ensure that
all stops in the network can be reached from any other
stop using at least one path through the network.

5.4. Routes
Given a network of stops and edges, this phase gener-

ates routes over the network. This is done by creating
short and long distance routes in two sequential steps.
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1 Function RemovelLooseStops (S, E, N, 0, )
Input: Set of stops S;
Set of edges E between the stops from S;

Radius ¥ in which to look for stops.

foreach s € S with degree of I w.r.t. E do

sx = x coordinate of s; s, = y coordinate of s;
A = N closest stations to s in S excluding s;

if 0 <= 0 and A not empty then

¢x=(sx_/1x)*ﬁ;¢y =(Sy_/ly)*l9;

Ox = Sx; Oy = Sy}

while distance between o and s < 6 do
Ox += Py} 0y += ¢y;

o e NN N e W N

-
N - O

-
w

Maximum number N of closest stations to consider;
Maximum average distance 6 around a stop to be considered a loose station;

A = closest station to s in § excluding s; A, = x coordinate of A; A, = y coordinate of A;
0 = average distance between each pair of stops in A;

s’ = random station around o with radius § * 9;
if s’ exists, add edge between s and s’ to E and continue next for-loop iteration;

Algorithm 1: Reduce the number of loose stops by adding additional edges.

Short-distance The goal of the first step is to create
short routes where vehicles deliver each passed stop.
This step makes sure that all edges are used in at least one
route, this ensures that each stop can at least be reached
from each other stop with one or more transfers to
another line. The algorithm does this by first determining
a subset of the largest stops in the network, based
on the population value. The shortest path from each
large stop to each other large stop through the network
is determined. if this shortest path is shorter than a
predetermined value in terms of the number of edges,
then this path is stored as a route, in which all passed
stops are considered as actual stops in the route. For
each edge that has not yet been passed after this, a route
is created by iteratively adding unpassed edges to the
route that are connected to the edge until an edge is
found that has already been passed.

Long-distance In the next step, longer routes are cre-
ated, where the transport vehicle not necessarily halts at
each passed stop. This is done by iteratively picking two
stops from the list of largest stops using the network-
based method [8]] with each stop having an equal chance
to be selected. A heuristical shortest path algorithm is
used to determine a route between these stops. This al-
gorithm searches for edges in the geographical direction
of the target stop. This is done to limit the complexity
of finding long paths through potentially large networks.
A random amount of the largest stops on the path are
selected, where the amount is a value between a mini-

mum and maximum preconfigured route length. This
iteration ends when a predetermined number of routes
are generated.

Generator Objectives This algorithm takes into ac-
count the objectives of route design [20]], as discussed
in Section 2] More specifically, by first focusing on the
largest stops, a minimal level of area coverage and de-
mand satisfaction is achieved, because the largest stops
correspond to highly populated areas, which therefore
satisfies at least a large part of the population. By deter-
mining the shortest path between these largest stops, the
route and trip directness between these stops is optimal.
Finally, by not instantiating all possible routes over the
network, the total route length is limited to a reasonable
level.

5.5. Trips

A time-agnostic transit network with routes has been
generated in the previous steps. In this final phase,
we temporally instantiate routes by first determining
starting times for trips, after which the following stop
times can be calculated based on route distances. Instead
of generating explicit timetables, as is done in typical
transit scheduling methodologies, we create fictional
rides of vehicles. In order to achieve realistic trip times,
we approximate real trip time distributions, with the
possibility to encounter delays.

As mentioned before in Section 2] each consecutive
pair of start and stop time in a trip over an edge corre-
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sponds to a connection. A connection can therefore be
represented as a pair of timestamps, a link to the edge
representing the departure and arrival stop, a link to the
trip it is part of, and its index within this trip.

Trip Starting Times The trips generator iteratively
creates new connections until a predefined number is
reached. For each connection, a random route is selected
with a larger chance of picking a long route. Next, a
random start time of the connection is determined. This
is done by first picking a random day within a certain
range. After that, a random hour of the day is determined
using a preconfigured distribution. This distribution is
derived from the public logs of iRail% a route planning
Ap1in Belgium [9]. A seperate hourly distribution is used
for weekdays and weekends, which is chosen depending
on the random day that was determined.

Stop Times Once the route and the starting time have
been determined, different stop times across the trip
can be calculated. For this, we take into account the
following factors:
— Maximum vehicle speed w, preconfigured con-
stant.
— Vehicle acceleration ¢, preconfigured constant.
— Connection distance ¢, Euclidian distance between
stops in network.
— Stop size o, derived from population value.
For each connection in the trip, the time it takes for a
vehicle to move between the two stops over a certain

distance is calculated using the formula in
calculates the required time to reach max-
imum speed and calculates the required

distance to reach maximum speed. This formula simu-
lates the vehicle speeding up until its maximum speed,
and slowing down again until it reaches its destination.
When the distance is too short, the vehicle will not
reach its maximum speed, and just speeds up as long as
possible until is has to slow down again to stop in time.

Ty =w/s 2
60=Ts-s 3)
. 2T, + (6 — 20,) /0w if 6, < 6/2
duration =
V20/¢ otherwise
4

Not only the connection duration, but also the waiting
times of the vehicle at each stop are important for
determining the stop times. These are calculated as a
constant minimum waiting time together with a waiting
time that increases for larger stop sizes o, this increase
is determined by a predefined growth factor.

Delays Finally, each connection in the trip will have
a certain chance to encounter a delay. When a delay is
applicable, a delay value is randomly chosen within a
certain range. Next to this, also a cause of the delay is
determined from a preconfigured list. These causes are
based on the Traffic Element Events from the Trans-
port Disruption ontology[’} which contains a number of
events that are not planned by the network operator such
as strikes, bad weather or animal collisions. Different
types of delays can have a different impact factor of the
delay value, for instance, simple delays caused by rush
hour would have a lower impact factor than a major
train defect. Delays are carried over to next connections
in the trip, with again a chance of encountering addi-
tional delay. Furthermore, these delay values can also
be reduced when carried over to the next connection
by a certain predetermined factor, which simulates the
attempt to reduce delays by letting vehicles drive faster.

Generator Objectives For trip generation, we take
into account several objectives from the setting of fre-
quencies and timetabling from transit planning [20]. By
instantiating more long distance routes, we aim to in-
crease demand satisfaction as much as possible, because
these routes deliver busy and populated areas, and the
goal is to deliver these more frequently. Furthermore, by
taking into account realistic time distributions for trip
instantiation, we also adhere to this objective. Secondly,
by ensuring waiting times at each stop that are longer
for larger stations, the transfer coordination objective is
taken into account to some extent.

6. Implementation

In this section, we discuss the implementation details
of PoDiGG, based on the generator algorithm introduced
in Section 5] PopiGa is split up into two parts: the main
PODIGG generator, which outputs GTrs data, and PoDiGG-
Lc, which depends on the main generator to output
RDF data. Serialization in RDF using existing ontologies,

6 |https://hello.irail.be

7 https://transportdisruption.github.io/
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such as the cTr{®¥|and Linked Connectiong® ontologies,
allows this inherently linked data to be used within RDF
data management systems, where it can for instance be
used for benchmarking purposes. Providing output in
GtFs will allow this data to be used directly within all
systems that are able to handle transit feeds, such as
route planning systems. The two generator parts will be
explained hereafter, followed by a section on how the
generator can be configured using various parameters.

6.1. popiGG

The main requirement of our system is the ability
to generate realistic public transport datasets using the
mimicking algorithm that was introduced in Section [5}
This means that given a population distribution of a
certain region, the system must be able to design a
network of routes, and determine timely trips over this
network.

PODIGG is implemented to achieve this goal. It is writ-
ten in JavaScript using Node.js, and is available under
an open license on GitHub™] In order to make instal-
lation and usage more convenient, PODIGG is available
as a Node module on the NpM'T| package manager and
as a Docker image on Docker Huf™| to easily run on
any platform. Every sub-generator that was explained
in Section [5} is implemented as a separate module.
This makes popica highly modifiable and composable,
because different implementations of sub-generators
can easily be added and removed. Furthermore, this
flexible composition makes it possible to use real data
instead of certain sub-generators. This can be useful
for instance when a certain public transport network is
already available, and only the trips and connections
need to be generated.

We designed popiGa to be highly configurable to
adjust the characteristics of the generated output across
different levels, and to define a certain seed parameter
for producing deterministic output.

All sub-generators store generated data in-memory,
using list-based data structures directly corresponding
to the GTrs format. This makes GTFs serialization a
simple and efficient process. Table [T| shows the GTFs
files that are generated by the different popigc modules.
This table does not contain references to the region and

8 http://vocab.gtfs.org/terms

9 |http://semweb.mmlab.be/ns/linkedconnections
10 https://github.com/PoDiGG/podigg

1 https://www.npmjs.com/package/podigg

12 |https://hub.docker.com/r/podigg/podigg/

File Generator
agency.txt Constant
stops. txt Stops
routes.txt Routes
trips.txt Trips
stop_times.txt Trips
calendar.txt Trips
calendar_dates.txt | Trips
delays.txt Trips
Table 1

The GrFs files that are written by popiGa, with their corresponding
sub-generators that are responsible for generating the required data.
The files in bold refer to files that are required by the GTrs specification.

Figure 6. Visualization of a generated public transport network based
on Belgium’s population distribution. Each route has a different color,
and dark route colors indicate more frequent trips over them than light
colors. The population distribution is illustrated for each cell as a scale
going from white (low), to red (medium) and black (high). Full image:
https://linkedsoftwaredependencies.org/raw/podigg/gen.png

edges generator, because they are only used internally
as prerequisites to the later steps. All required files are
created to have a valid GTrs dataset. Next to that, the
optional file for exceptional service dates is created.
Furthermore, delays. txt is created, which is not part
of the GTFs specification. It is an extension we provide
in order to serialize delay information about each con-
nection in a trip. These delays are represented in a csv
file containing columns for referring to a connection in
a trip, and contains delay values in milliseconds and a
certain reason per connection arrival and departure, as
shown in Listing [I]

In order to easily observe the network structure in
the generated datasets, popiGG will always produce a
figure accompanying the GTrs dataset. Figure [6] shows
an example of such a visualization.

Because the generation of large datasets can take a
long time depending on the used parameters, PODIGG
has a logging mechanism, which provides continuous
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https://linkedsoftwaredependencies.org/raw/podigg/gen.png
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trip_id, stop_sequence,delay_departure,delay_arrival,delay_departure_reason

100_4 ,0 ,0 , 1405754
100_6 ,0 ,0 ,1751671
1006 ,1 ,1751671 ,1553820
100_7 ,0 ,2782295 ,0

feedback to the user about the current status and progress
of the generator.

Finally, pobica provides the option to derive realistic
public transit queries over the generated network, aimed
at testing the load of route planning systems. This is
done by iteratively selecting two random stops weighed
by their size and choosing a random starting time based
on the same time distribution as discussed in Section[5.3]
This is serialized to a sson formaf™3] that was intro-
duced for benchmarking the Linked Connections route
planner [[10].

6.2. PODIGG-LC

PODiGG-LC is an extension of PoDiGG, that outputs data
in Turtle/rDF using the ontologies shown in Figure [1} It
is also implemented in JavaScript using Node.js, and
available under an open license on GitHui™| pobicG-Lc
is also available as a Node module on NpMT and as a
Docker image on Docker Hu For this, we extended
the Trs2Lc too[that is able to convert GTFs datasets to
RDF using the Linked Connections and GTFs ontologies.
The original tool serializes a minimal subset of the
GTFs data, aimed at being used for Linked Connections
route planning over connections. Our extension also
serializes trip, station and route instances, with their rel-
evant interlinking. Furthermore, our GTFs extension for
representing delays is also supported, and is serialized
using a new Linked Connections Delay ontology[™] that
we created.

6.3. Configuration

PODIGG accepts a wide range of parameters that can
be used to configure properties of the different sub-
generators. Table[Zshows an overview of the parameters,
grouped by each sub-generator. PoDiGG and PODIGG-LC

13 https://github.com/linkedconnections/benchmark-
belgianrail#transit-schedules

14 'https://github.com/PoDiGG/podigg- lc

15 https://www.npmjs.com/package/podigg- lc

16 https://hub.docker.com/r/podigg/podigg-lc/

17 https://github.com/PoDiGG/gtfs2lc

18 |http://semweb.datasciencelab.be/ns/linked-
connections-delay/

’

,td:BrokenDownTrain

,delay_arrival_reason
,td:RepairWork
,td:BrokenDownTrain
,td:BrokenDownTrain

,td:TreeAndVegetationCuttingWork,
Listing 1: Sample of a delays. txt file in a GTFs dataset

accept these parametery™| either in a json configura-
tion file or via environment variables. Both popicc and
poDiGG-LC produce deterministic output for identical
sets of parameters, so that datasets can easily be re-
produced given the configuration. The seed parameter
can be used to introduce pseudo-randomness into the
output.

7. Evaluation

In this section, we discuss our evaluation of PoDiGG.
We first evaluate the realism of the generated datasets
using a constant seed by comparing its coherence to
real datasets, followed by a more detailed realism eval-
uation of each sub-generator using distance functions.
Finally, we provide an indicative efficiency and scala-
bility evaluation of the generator and discuss practical
dataset sizes. All scripts that were used for the following
evaluation can be found on GitHub{¥%] Our experiments
were executed on a 64-bit Ubuntu 14.04 machine with
128 GB of memory and a 24-core 2.40 GHz cpu.

7.1. Coherence

Metric In order to determine how closely synthetic RDF
datasets resemble their real-world variants in terms of
structuredness, the coherence metric [15] can be used.
In rRDF dataset generation, the goal is to reach a level of
structuredness similar to real datasets. As mentioned
before in Section 2] many synthetic datasets have a
level of structuredness that is higher than their real-
world counterparts. Therefore, our coherence evaluation
should indicate that our generator is not subject to the
same problem. We have implemented a command-line
tool?T| to calculate the coherence value for any given
input dataset.

19 https://github.com/PoDiGG/podigg#parameters
20 \https://github.com/PoDiGG/podigg-evaluate
2l https://github.com/PoDiGG/graph- coherence
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Name Default Value  Description
seed 1 The random seed
region_generator isolated Name of a region generator. (isolated, noisy or region)

.5 lat_offset 0 Value to add with all generated latitudes

éﬂ lon_offset 0 Value to add with all generated longitudes
cells_per_latlon 100 How many cells go in 1 latitude/longitude
stops 600 How many stops should be generated
min_station_size 0.01 Minimum cell population value for a stop to form
max_station_size 30 Maximum cell population value for a stop to form

" start_stop_choice_power 4 Power for selecting large population cells as stops

& min_interstop_distance 1 Minimum distance between stops in number of cells

? factor_stops_post_edges 0.66 Factor of stops to generate after edges
edge_choice_power 2 Power for selecting longer edges to generate stops on
stop_around_edge_choice_power 4 Power for selecting large population cells around edges
stop_around_edge_radius 2 Radius in number of cells around an edge to select points
max_intracluster_distance 100 Maximum distance between stops in one cluster
max_intracluster_distance_growthfactor 0.1 Power for clustering with more distant stops

- post_cluster_max_intracluster_distancefactor 1.5 Power for connecting a stop with multiple stops

gﬂ loosestations_neighbourcount 3 Neighbours around a loose station that should define its area

- loosestations_max_range_factor 0.3 Maximum loose station range relative to the total region size
loosestations_max_iterations 10 Maximum iteration numberto try to connect one loose station
loosestations_search_radius_factor 0.5 Loose station neighbourhood size factor
routes 1000 The number of routes to generate

" largest_stations_fraction 0.05 The fraction of stops to form routes between

% penalize_station_size_area 10 The area in which stop sizes should be penalized

&~ max_route_length 10 Maximum number of edges for a route in the macro-step
min_route_length 4 Minimum number of edges for a route in the macro-step
time_initial 0 The initial timestamp (ms)
time_final 24 x 3600000  The final timestamp (ms)
connections 30000 Number of connections to generate
stop_wait_min 60000 Minimum waiting time per stop
stop_wait_size_factor 60000 Waiting time to add multiplied by station size

" route_choice_power 2 Power for selecting longer routes for connections

.S vehicle_max_speed 160 Maximum speed of a vehicle in km/h

g vehicle_speedup 1000 Vehicle speedup in km/(h?)

é hourly_weekday_distribution n Hourly connection chances for weekdays
hourly_weekend_distribution n Hourly connection chances for weekend days
delay_chance 0 Chance for a connection delay
delay_max 3600000 Maximum delay
delay_choice_power 1 Power for selecting larger delays
delay_reasons L2 Default reasons and chances for delays
delay_reduction_duration_fraction 0.1 Maximum part of connection duration to subtract for delays
start_stop_choice_power 4 Power for selecting large starting stations
query_count 100 The number of queries to generate

g | time_initial 0 The initial timestamp

E‘ time_final 24 x 3600000  The final timestamp

5‘ max_time_before_departure 3600000 The maximum time until a query should be started
hourly_weekday_distribution n Chance for each hour to have a connection on a weekday
hourly_weekend_distribution . Chance for each hour to have a connection on a weekend day

Table 2

Configuration parameters for the different sub-generators. Time val-
ues are represented in milliseconds. ! Time distributions are based
on public route planning logs [9]. 2 Default delays are based on
the Transport Disruption ontology (https://transportdisruption.

github.io/).
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Results When measuring the coherence of the Belgian
railway, buses and Dutch railway datasets, we discover
high values for both the real-world datasets and the
synthetic datasets, as can be seen in Table E} These
nearly maximal values indicate that there is a very high
level of structuredness in these real-world datasets. Most
instances have all the possible values, unlike most typ-
ical rDF datasets, which have values around or below
0.6 [15]. That is because of the very specialized nature
of this dataset, and the fact that they originate from
GTFs datasets that have the characteristics of relational
databases. Only a very limited number of classes and
predicates are used, where almost all instances have
the same set of attributes. In fact, these very high co-
herence values for real-world datasets simplify the pro-
cess of synthetic dataset generation, as less attention
needs to be given to factors that lead to lower levels of
structuredness, such as optional attributes for instances.
When generating synthetic datasets using pobicG with
the same number of stops, routes and connections for
the three gold standards, we measure very similar co-
herence values, with differences ranging from 0.08%
to 1.64%. This confirms that PoDiGG is able to create
datasets with the same high level of structuredness to
real datasets of these types, as it inherits the relational
database characteristics from its GTFs-centric mimicking
algorithm.

7.2. Distance to Gold Standards

While the coherence metric is useful to compare the
level of structuredness between datasets, it does not
give any detailed information about how real synthetic
datasets are in terms of their distance to the real datasets.
In this case, we are working with public transit feeds
with a known structure, so we can look at the different
datasets aspects in more detail. More specifically, we
start from real geographical areas with their population
distributions, and consider the distance functions be-
tween stops, edges, routes and trips for the synthetic
and gold standard datasets. In order to check the ap-
plicability of popiGG to different transport types and
geographical areas, we compare with the gold standard
data of the Belgian railway, the Belgian buses and the
Dutch railway. The scripts that were used to derive these
gold standards from real-world data can be found on
GitHub?]

22 https://github.com/PoDiGG/population-density-
generator

In order to construct distance functions for the differ-
ent generator elements, we consider several helper func-
tions. The function in is used to determine
the closest element in a set of elements B to a given
element a, given a distance function f. The function in
[Equation 6| calculates the distance between all elements
in A and all elements in B, given a distance function f.
The computational complexity of y is O(||B|| - «(f)),
where «( f) is the cost for one distance calculation for f.
The complexity of A then becomes O(||A]| - || Bl - «(f)).

x(a, B, f) = arg min, g f(a, b) 5
A(A,B, f) =
%A f(a, x(a,B, f)) + bZB f b, x(b, A f))  (6)
1Al + 1| BI|

Stops Distance For measuring the distance between
two sets of stops S; and S,, we introduce the distance
function from [Equation 7] This measures the distance
between every possible pair of stops using the Euclidian
distance function d. Assuming a constant execution
time for «(d), the computational complexity for A is
OIS - 11S21D-

As(S1,82) = A(S1, 52, d) N

Edges Distance In order to measure the distance be-
tween two sets of edges E| and E;, we use the distance
function from [Equation 8] which measures the distance
between all pairs of edges using the distance function
d.. This distance function d., which is introduced in
measures the Euclidian distance between
the start and endpoints of each edge, and between the
different edges, weighed by the length of the edges. The
constant 1 in[Equation 9]is to ensure that the distance
between two edges that have an equal length, but exist
at a different position, is not necessarily zero. The com-
putational cost of d. can be considered as a constant, so
the complexity of A. becomes O(||E1|| - || E2|])-

Ac(Er, Ep) = A(EY, Ep, de) ()
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Belgian buses

Dutch railway

Belgian railway
Real 0.9845
Synthetic 0.9879
Difference 0.0034

Table 3

0.9969 0.9862
0.9805 0.9870
0.0164 0.0008

Coherence values for three gold standards compared to the values for equivalent synthetic variants.

de(e1, ) :=min(d (™™, ™) + d(el, &),
d(egrom’ et20) + d(etlo’ egrom))

S (d(eP™, et) — d(eFm, ey + 1)

9

Routes Distance Similarly, the distance between two
sets of routes Ry and R, is measured in
by applying A for the distance function d.
introduces this distance function d; between two routes,
which is calculated by considering the edges in each
route and measuring the distance between those two
sets using the distance function A, from|[Equation 8| By
considering the maximum amount of edges per route as
emax, the complexity of d; becomes O(eéax) This leads
to a complexity of O(||Ry|| - [|Rz]| - €2,,5) for A;.

Ar(R1, Ry) = A(Ry, Ry, dy) (10)
de(r1,r2) = Ae(ri®, 1) (11)

Connections Distance Finally, we measure the dis-
tance between two sets of connections C; and C, using

the function from The distance between

two connections is measured using the function from
which is done by considering their respec-
tive temporal distance weighed by a constant €[} and
their geospatial distance using the edge distance func-
tion d.. The complexity of time calculation in d. can
be considered being constant, which makes it overall
complexity O(e2,,). For A, this leads to a complexity
of OUICI - 1G]l - )

A(Cr, ) = A(Cy, Gy, d) (12)

23 When serializing time in milliseconds, we set € to 60000.

. departureTime departureTime
dc(Cl, C2) = ((Cl P - C2 P )

+ (C?rrivalTime _ C?zlrrivalTime)/e)

+ de(c1,2) (13)

Computability When using the introduced functions
for calculating the distance between stops, edges, routes
or connections, execution times can become long for a
large number of elements because of their large com-
plexity. When applying these distance functions for
realistic numbers of stops, edges, routes and connec-
tions, several optimizations should be done in order to
calculate these distances in a reasonable time. A major
contributor for these high complexities is y for finding
the closest element from a set of elements to a given
element, as introduced in In practice, we
only observed extreme execution times for the respective
distance between routes and connections. For routes, we
implemented an optimization, with the same worst-case
complexity, that indexes routes based on their geospatial
position, and performs radial search around each route
when the closest one from a set of other routes should
be found. For connections, we consider the linear time
dimension when performing binary search for finding
the closest connection from a set of elements.

Metrics In order to measure the realism of each gen-
erator phase, we introduce a realism factor p for each
phase. These values are calculated by measuring the
distance from randomly generated elements to the gold
standard, divided by the distance from the actually gen-
erated elements to the gold standard, as shown below
for respectively stops, edges, routes and connections.
We consider these randomly generated elements having
the lowest possible level of realism, so we use these as
a weighting factor in our realism values.

Ps(Stands Sgens Sgs) = As(Srand> Sgs)/As (Sgens Sgs)
Pe(Erand; Egens Egs) '= Ac(Erand, Egs)/Ac(Egen, Egs)
Pr(Rrand, Rgen, Rgs) = Ar(Rrand, Rgs)/Ar(Rgen, Rgs)
Pc(Crands Coens Cos) = Ac(Crands Cgs) /Ac(Coen, Cos)
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Results We measured these realism values with gold
standards for the Belgian railway, the Belgian buses and
the Dutch railway. In each case, we used an optimal set
of parameterg??|to achieve the most realistic generated
output. Table 4] shows the realism values for the three
cases, which are visualized in Figures [7] to Each
value is larger than 1, showing that the generator at
least produces data that is closer to the gold standard,
and is therefore more realistic. The realism for edges
is in each case very large, showing that our algorithm
produces edges that are very similar to actual the edge
placement in public transport networks according to
our distance function. Next, the realism of stops is
lower, but still sufficiently high to consider it as realistic.
Finally, the values for routes and connections show that
these sub-generators produce output that is closer to
the gold standard than the random function according
to our distance function. Routes achieve the best level
of realism for the Belgian railway case. For this same
case, the connections are however only slightly closer
to the gold standard than random placement, while for
the other cases the realism is more significant. All of
these realism values show that PopiGG is able to produce
realistic data for different regions and different transport

types.

7.3. Performance

Metrics While performance is not the main focus of
this work, we provide an indicative performance eval-
uation in this section in order to discover the bottle-
necks and limitations of our current implementation
that could be further investigated and resolved in future
work. We measure the impact of different parameters
on the execution times of the generator. The three main
parameters for increasing the output dataset size are the
number of stops, routes and connections. Because the
number of edges is implicitly derived from the number
of stops in order to reach a connected network, this can
not be configured directly. In this section, we start from
a set of parameters that produces realistic output data
that is similar to the Belgian railway case. We let the
value for each of these parameters increase to see the
evolution of the execution times and memory usage.

24 https://github.com/PoDiGG/podigg-evaluate/blob/
master/bin/evaluate.js

. .W“ t Y
3 ;)' ””'}"‘“ “’f' hd ': * ;.‘ Y
Lk """%'\&} g
“ i R
% h

Fig. ¢: Gold standard

Figure 7. Stops for the Belgian railway case.

Results Figure|l I{shows a linear increase in execution
times when increasing the routes or connections. The
execution times for stops do however increase much
faster, which is caused by the higher complexity of
networks that are formed for many stops. The used
algorithms for producing this network graph proves to
be the main bottleneck when generating large networks.
Networks with a limited size can however be generated
quickly, for any number of routes and connections. The
memory usage results from Figure|l2|also show a linear
increase, but now the increase for routes and connections
is higher than for the stops parameter. These figures
show that stops generation is a more cpuU intensive
process than routes and connections generation. These
last two are able to make better usage of the available
memory for speeding up the process.

7.4. Dataset size

An important aspect of dataset generation is its ability
to output various dataset sizes. In popiGg, different
options are available for tweaking these sizes. Increasing
the time range parameter within the generator increases
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Belgian railway

Belgian buses  Dutch railway

Stops 5.5490
Edges 147.4209
Routes 2.2420
Connections 1.0451

297.0888 4.0017
1633.4693 318.4131
1.6094 1.3095
1.5006 1.3017

Realism values for the three gold standards in case of the different sub-generators, respectively calculated for the stops ps, edges pe, routes pr and

connections pg.

Fig. c¢: Gold standard

Figure 8. Edges for the Belgian railway case.

the number of connections while the number of stops
and routes will remain the same. When enlarging the
geographical area over the same period of time, the
opposite is true. As arule of thumb, based on the number
of triples per connection, stops and routes, the total
number of generated triples per dataset is approximately
7 - #connections + 6 - #stops + #routes. For the Belgian
railway case, containing 30,011 connections over a
period of 9 months, with 583 stops and 362 routes,
this would theoretically result in 213,937 triples. In
practice, we reach 235,700 triples when running with
these parameters, which is slightly higher because of
the other triples that are not taken into account for this

Fig. ¢: Gold standard

Figure 9. Routes for the Belgian railway case.
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Figure 10. Connections per hour for the Belgian railway case.

simplified formula, such as the ones for trips, stations
and delays.
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Figure 11. Execution times when increasing the number of stops,
routes or connections.
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Figure 12. Memory usage when increasing the number of stops, routes
or connections.

8. Discussion

In this section, we discuss the main characteristics,
the usage within benchmarks and the limitations of this
work. Finally, we mention several popiGG use cases.

8.1. Characteristics

Our main research question on how to generate real-
istic synthetic public transport networks has been an-
swered by the introduction of the mimicking algorithm
from Section 5] based on commonly used practises in
transit network design. This is based on the accepted
hypothesis that the population distribution of an area is
correlated with its transport network design and schedul-
ing. We measured the realism of the generated datasets
using the coherence metric in Section[7.T|and more fine-
grained realism metrics for different public transport
aspects in Section

PODiGG, our implementation of the algorithm, accepts
a wide range of parameters to configure the mimicking
algorithm. popiGG and popiGG-Lc are able to output the
mimicked data respectively as GTrs and RDF datasets,
together with a visualization of the generated transit
network. Our system can be used without requiring any
extensive setup or advanced programming skills, as it
consists of simple command lines tools that can be in-
voked with a number of optional parameters to configure

1,000,000
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the generator. Our system is proven to be generalizable
to other transport types, as we evaluated popiG for
the bus and train transport type, and the Belgium and
Netherlands geospatial regions in Section[7.2]

8.2. Usage within Benchmarks

A synthetic dataset generator, which is one of the main
contributions of this work, forms an essential aspect of
benchmarks for (RDF) data management systems [2119].
Prescribing a concrete benchmark that includes the
evaluation of tasks is out of scope. However, to provide
a guideline on how our dataset generator can be used
as part of a benchmark, we relate the primary elements
of public transport datasets to choke points in data
management systems, i.e., key technical challenges in
these system. Below, we list choke points related to
storage and querying within data management systems
and route planning systems. For each choke point, we
introduce example tasks to evaluate them in the context
of public transport datasets. The querying choke points
are inspired by the choke points identified by Petzka et.
al. [27] for faceted browsing.

1. Storage of entities.

(a) Storage of stops, stations, connections, routes,
trips and delays.

2. Storage of links between entities.

(a) Storage of stops per station.

(b) Storage of connections for stops.

(c) Storage of the next connection for each con-
nection.

(d) Storage of connections per trip.

(e) Storage of trips per route.

(f) Storage of a connection per delay.

3. Storage of literals.

(a) Storage of latitude, longitude, platform code
and code of stops.

(b) Storage of latitude, longitude and label of
stations.

(c) Storage of delay durations.

(d) Storage of the start and end time of connec-
tions.

4. Storage of sequences.

(a) Storage of sequences of connections.

5. Find instances by property value.

(a) Find latitude, longitude, platform code or
code by stop.

(b) Find station by stop.

(c) Find country by station.
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(d) Find latitude, longitude, or label by station.
(e) Find delay by connection.

(f) Find next connection by connection.

(g) Find trip by connection.

(h) Find route by connection.

(i) Find route by trip.

. Find instances by inverse property value.

(a) Inverse of examples above.

. Find instances by a combination of properties

values.
(a) Find stops by geospatial location.
(b) Find stations by geospatial location.

. Find instances for a certain property path with a

certain value.
(a) Find the delay value of the connection after
a given connection.
(b) Find the delay values of all connections after
a given connection.

. Find instances by inverse property path with a

certain value.

(a) Find stops that are part of a certain trip that
passes by the stop at the given geospatial
location.

Find instances by class, including subclasses.

(a) Find delays of a certain class.

Find instances with a numerical value within a
certain interval.

(a) Find stops by latitude or longitude range.

(b) Find stations by latitude or longitude range.

(c) Find delays with durations within a certain
range.

Find instances with a combination of numerical
values within a certain interval.

(a) Find stops by geospatial range.

(b) Find stations by geospatial range.

Find instances with a numerical interval by a cer-
tain value for a certain property path.

(a) Find connections that pass by stops in a given

geospatial range.
Find instances with a numerical interval by a cer-
tain value.

(a) Find connections that occur at a certain time.
Find instances with a numerical interval by a cer-
tain value for a certain property path.

(a) Find trips that occur at a certain time.

. Find instances with a numerical interval by a cer-

tain interval.

(a) Find connections that occur during a certain
time interval.
17. Find instances with a numerical interval by a cer-
tain interval for a certain property path.
(a) Find trips that occur during a certain time
interval.
18. Find instances with numerical intervals by intervals
with property paths.
(a) Find connections that occur during a certain
time interval with stations that have stops in
a given geospatial range.
(b) Find trips that occur during a certain time
interval with stops in a given geospatial range.
(c) Plan a route that gets me from stop A to stop
B starting at a certain time.

This list of choke points and tasks can be used as a
basis for benchmarking spatiotemporal data manage-
ment systems using public transport datasets. For exam-
ple, spaRQL queries can be developed based on these
tasks and executed by systems using a public transport
dataset. For the benchmarking with these tasks, it is
essential that the used datasets are realistic, as discussed
in Section Otherwise, certain choke points may not
resemble the real world. For example, if an unrealistic
dataset would contain only a single trip that goes over
all stops, then finding a route between two given stops
could be unrealistically simple.

8.3. Limitations and Future Work

In this section, we discuss the limitations of the
current mimicking algorithm and its implementation,
together with further research opportunities.

Memory Usage The sequential steps in the presented
mimicking algorithm require persistence of the inter-
mediary data that is generated in each step. Currently,
PODIGG is implemented in such a way that all data is
kept in-memory for the duration of the generation, until
it is serialized. When large datasets need to be gener-
ated, this requires a larger amount of memory to be
allocated to the generator. Especially for large amounts
of routes or connections, where 100 million connections
already require almost 10GB of memory to be allocated.
While performance was not the primary concern in this
work, in future work, improvements could be made in
the future. A first possible solution would be to use a
memory-mapped database for intermediary data, so that
not all data must remain in memory at all times. An
alternative solution would be to modify the mimicking
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process to a streaming algorithm, so that only small
parts of data need to be kept in memory for datasets
of any size. Considering the complexity of transit net-
works, a pure streaming algorithm might not be feasible,
because route design requires knowledge of the whole
network. The generation of connections however, could
be adapted so that it works as a streaming algorithm.

Realism We aimed to produce realistic transit feeds by
reusing the methodologies learned in public transit plan-
ning. Our current evaluation compares generated output
to real datasets, as no similar generators currently exist.
When similar generation algorithms are introduced in
the future, this evaluation can be extended to compare
their levels of realism. Our results showed that all sub-
generators, except for the trips generator, produced out-
put with a high realism value. The trips are still closer
to real data than a random generator, but this can be
further improved in future work. This can be done by for
instance taking into account network capacities [20]] on
certain edges when instantiating routes as trips, because
we currently assume infinite edge capacities, which can
result in a large amount of connections over an edge at
the same time, which may not be realistic for certain
networks. Alternatively, we could include other factors
in the generation algorithm, such as the location of cer-
tain points of interest, such as shopping areas, schools
and tourist spots. In the future, a study could be done
to identify and measure the impact of certain points
of interest on transit networks, which could be used as
additional input to the generation algorithm to further
improve the level of realism. Next to this, in order to
improve transfer coordination [20]], possible transfers
between trips should be taken into account when gener-
ating stop times. Limiting the network capacity will also
lead to natural congestion of networks [8]], which should
also be taken into account for improving the realism.
Furthermore, the total vehicle fleet size [20] should be
considered, because we currently assume an infinite
number of available vehicles. It is more realistic to have
a limited availability of vehicles in a network, with the
last position of each vehicle being of importance when
choosing the next trip for that vehicle.

Alternative Implementations An alternative way of
implementing this generator would be to define declar-
ative dependency rules for public transport networks,
based on the work by Pengyue et. al. [25]]. This would
require a semantic extension to the engine so that is
aware of the relevant ontologies and that it can serialize
to one or more RDF formats. Alternatively, machine

learning techniques could be used to automatically learn
the structure and characteristics of real datasets and
create similar realistic synthetic datasets [16], or to
create variants of existing datasets [31]]. The downside
of machine learning techniques is however that it is
typically more difficult to tweak parameters of automat-
ically learned models when specific characteristics of
the output need to be changed, when compared to a
manually implemented algorithm. Sensitivity analysis
could help to determine the impact of such parameters
in order to understand the learned models better.

Streaming Extension Finally, the temporal aspect of
public transport networks is useful for the domain of
RDF stream processing [12]]. Instead of producing single
static datasets as output, popiGG could be adapted to pro-
duce RDF streams of connections and delays, where infor-
mation about stops and routes are part of the background
knowledge. Such an extension can become part of a
benchmark, such as CityBench [[1] and LSBench [24]],
for assessing the performance of RDF stream processing
systems with temporal and geospatial capabilities.

8.4. pobicac In Use

PODIGG and PoDiGG-Lc have been developed for usage
within the HoBBIT platform. This platform is being
developed within the HOBBIT project and aims to provide
an environment for benchmarking rDF systems for Big
Linked Data. The platform provides several default
dataset generators, including pobiGa, which can be used
to benchmark systems.

PODIGG, and its generated datasets are being used in
the Eswc Mighty Storage Challenge 2017 and 2018 [18]].
The first task of this challenge consists of RDF data
ingestion into triple stores, and querying over this data.
Because of the temporal aspect of public transport data
in the form of connections, popiGG datasets are frag-
mented by connection departure time, and transformed
to a data stream that can be inserted. In task 4 of this
challenge, the efficiency of faceted browsing solutions
is benchmarked [27]]. In this work, a list of choke points
are identified regarding sPARQL queries on triple stores,
which includes points such as the selection of subclasses
and property-path transitions. Because of the geograph-
ical property of public transport data, popiGG datasets
are being used for this benchmark.

Finally, popiGa is being used for creating virtual tran-
sit networks of variable size for the purposes of bench-
marking route planning frameworks, such as Linked
Connections [[10]].
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9. Conclusions

In this article, we introduced a mimicking algorithm
for public transport data, based on steps that are used
in real-world transit planning. Our method splits this
process into several sub-generators and uses population
distributions of an area as input. As part of this article,
we introduced popiGa, a reusable framework that accepts
a wide range of parameters to configure the generation
algorithm.

Results show that the structuredness of generated
datasets are similar to real public transport datasets.
Furthermore, we introduced several functions for mea-
suring the realism of synthetic public transport datasets
compared to a gold standard on several levels, based
on distance functions. The realism was confirmed for
different regions and transport types. Finally, the execu-
tion times and memory usages were measured when in-
creasing the most important parameters, which showed
a linear increase for each parameter, showing that the
generator is able to scale to large dataset outputs.

The public transport mimicking algorithm we intro-
duced, with pobpicG and popiGG-Lc as implementations,
is essential for properly benchmarking the efficiency
and performance of public transport route planning
systems under a wide range of realistic, but synthetic
circumstances. Flexible configuration allows datasets
of any size to be created and various characteristics
to be tweaked to achieve highly specialized datasets
for testing specific use cases. In general, our dataset
generator can be used for the benchmarking of geospa-
tial and temporal rRDF data management systems, and
therefore lowers the barrier towards more efficient and
performant systems.
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