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Abstract. Our society is evolving towards massive data consumption
from heterogeneous sources, which includes rapidly changing data like
public transit delay information. Many applications that depend on dy-
namic data consumption require highly available server interfaces. Ex-
isting interfaces involve substantial costs to publish rapidly changing
data with high availability, and are therefore only possible for organisa-
tions that can afford such an expensive infrastructure. In my doctoral
research, I investigate how to publish and consume real-time and histor-
ical Linked Data on a large scale. To reduce server-side costs for making
dynamic data publication affordable, I will examine different possibili-
ties to divide query evaluation between servers and clients. This paper
discusses the methods I aim to follow together with preliminary results
and the steps required to use this solution. An initial prototype achieves
significantly lower server processing cost per query, while maintaining
reasonable query execution times and client costs. Given these promis-
ing results, I feel confident this research direction is a viable solution
for offering low-cost dynamic Linked Data interfaces as opposed to the
existing high-cost solutions.
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1 Introduction

The Web is an important driver of the increase in data. This data is partially
made up of dynamic data, which does not remain the same over time, like for
example the delay of a certain train or the currently playing track on a radio-
station. Dynamic data is mostly published as data streams [3], which tend to
be offered in a push-based manner. This requires data providers to have a per-
sistent connection with all clients who consume these streams. On top of that,
queries over real-time data are expected to be continuous, because the data are
now continuously updating streams instead of just finite stored datasets. At the
same time, this dynamic data also leads to the generation of historical data,
which may be useful for data analysis.
? Supervised by Ruben Verborgh and Erik Mannens

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-34129-3_55



2 Ruben Taelman

In this work, I investigate how to publish and consume non-high frequency
real-time and historical Linked Data. This real-time data for example includes
sensor results which update at a frequency in the order of seconds, use cases
that require updates in the order of milliseconds are excluded. The focus lies
at low-cost publication, so that large scale consumption of this data becomes
possible without endpoint availability issues.

In the next section, the existing work in the area will be discussed. Section 3
will explain the problem I am trying to solve, after which Section 4 will briefly
explain the methodology for solving this problem. Section 5 will discuss the
evaluation of this solution after which Section 6 will present some preliminary
results. Finally, in Section 7 I will explain the desired impact of this research.

2 State of the Art

Current solutions for querying and publishing dynamic data is divided in the
two generally disjunct domains of stream reasoning and versioning, which will
be explained hereafter. After that, a low cost server interface for static data will
be explained.

Stream reasoning is defined as “the logical reasoning in real time on gigantic
and inevitably noisy data streams in order to support the decision process of ex-
tremely large numbers of concurrent users” [4]. This area of research integrates
data streams with traditional RDF reasoners. Existing sparql extensions for
stream processing solutions like c-sparql [5] and cqels [10] are based on query

registration [4, 7], which allows clients to register their query at a streaming-
enabled sparql endpoint that will continuously evaluate this query. These data
streams consist of triples that are annotated with a timestamp, which indicates
the moment on which the triple is valid. These querying techniques can for ex-
ample be used to query semantic sensor data [13]. c-sparql is a first approach to
querying over both static and dynamic data. This solution requires the client to
register a query in an extended sparql syntax which allows the use of windows

over dynamic data. The execution of queries is based on the combination of a
traditional sparql engine with a Data Stream Management System (DSMS) [2].
The internal model of c-sparql creates queries that distribute work between
the DSMS and the sparql engine to respectively process the dynamic and static
data. cqels is a “white box” approach, as opposed to the “black box” approaches
like c-sparql. This means that cqels natively implements all query operators,
as opposed to c-sparql that has to transform the query to another language
for delegation to its subsystems. This native implementation removes the over-
head that black box approaches like c-sparql have. The syntax is very similar
as to that of c-sparql, also supporting query registration and time windows.
According to previous research [10], this approach performs much better than
c-sparql for large datasets, for simple queries and small datasets the opposite
is true.

Offering historical data can be achieved by versioning entire datasets [15]
using the Memento protocol [14] which extends http with content negotia-
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tion in the datetime dimension. Memento adds a new link to resources in the
http header, named the TimeGate, which acts as the datetime dimension for
a resource. It provides a list of timely versions of the resource which can be
requested. Using Memento’s datetime content negotiation and TimeGates, it is
possible to do Time Travel over the web and browse pages at a specific point in
time. R&WBase [17] is a triple-store versioning approach based on delta storage
combined with traditional snapshots. It offers a method for querying these ver-
sioned datasets using sparql. The dataset can be retrieved as a virtual graph for
each delta revision, thus providing Memento-like time travel without an explic-
ity time indication. TailR [11] provides a platform through which datasets can
be versioned based on a combination of snapshot and delta storage and offered
using the Memento protocol. It allows queries to retrieve the dataset version at
a given time and the times at which a dataset has changed.

Triple Pattern Fragments (tpfs) [18] is a Linked Data publication interface
which aims to solve the issue of low availability and performance of existing
sparql endpoints for static querying. It does this by moving part of the query
processing to the client, which reduces the server load at the cost of increased
data transfer and potentially increased query evaluation time. The endpoints are
limited to an interface with which only separate triple patterns can be queried
instead of full sparql queries. The client is then responsible for carrying out the
remaining work.

3 Problem Statement

Traditional public static sparql query endpoints have a major availability issue.
Experiments have shown that more than half of them only reach an availability of
less than 95% [6]. The unrestricted complexity of sparql queries [12] combined
with the public character of sparql endpoints requires an enormous server cost,
which can lead to a low server availability. Dynamic sparql streaming solutions
like c-sparql and cqels offer combined access to dynamic data streams and
static background data through continuously executing queries. Because of this
continuous querying, the cost of these servers can become even bigger than with
static querying for similarly sized datasets.

The definition of stream reasoning [4] states that it requires reasoning on
data streams for “an extremely large number of concurrent users”. If we can not
even reach a large number of concurrent static sparql queries against endpoints
without overloading them, how can we expect to do this for dynamic sparql
queries? Because evaluating these queries put an even greater load on the server
if we assume that the continuous execution of a query requires more processing
than the equivalent single execution of that query.

The main research question of our work is:

Question 1: How can we combine the low cost publication of non-high frequency
real-time and historical data, such that it can efficiently be queried together with
static data?



4 Ruben Taelman

high client effort high server effort

s
t
a
t
i
c

d
y
n
a
m

i
c

data

dump

sparql
resulttpf

data

stream

tpf query streamer

sparql
streaming

extensions

various types of

Linked Data Fragments

f
a
c
t
o
r

o
f

d
a
t
a

d
y
n
a
m

i
c
i
t
y

Fig. 1: ldf axis showing the server effort needed to publish different types of interface
together with a vertical axis showing the factor of data dynamicity an interface exposes.

To answer this question, we also need to find an answer to the following questions:

Question 2: How can we efficiently store non-high frequency real-time and
historical data and allow efficient transfer to clients?

Question 3: What kind of server interface do we need to enable client-side
query evaluation over both static and dynamic data?

These research questions have lead to the following hypotheses:

Hypothesis 1: Our storage solution can store new data in linear time with
respect to the amount of new data.

Hypothesis 2: Our storage solution can retrieve data by time or triple values
in linear time with respect to the amount of retrieved data.

Hypothesis 3: The server cost for our solution is lower than the alternatives.

Hypothesis 4: Data transfer is the main factor influencing query execution time
in relation to other factors like client processing and server processing.

4 Research Approach

As discussed in Section 2, tpf is a Linked Data publication interface which aims
to solve the high server cost of static Linked Data querying. This is done by
partially evaluating queries client-side, which requires the client to break down
queries into more elementary queries which can be solved by the limited and
low cost tpf server interface. These elementary query results are then locally
combined by the client to produce results for the original query.

We will extend this approach to continuously updating querying over dynamic

data.
Figure 1 shows this shift to more static data in relation to the Linked Data

Fragments (ldf) [19] axis. ldf is a conceptual framework to compare Linked
Data publication interface in which tpf can be seen as a trade-off between
high server and client effort for data retrieval. sparql streaming solutions like
c-sparql and cqels can handle high frequency data and they require a high
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Fig. 2: A client must be able to evaluate queries by retrieving data from multiple
heterogeneous datasources.

server effort because they are at least as expressive as regular sparql. Data
streams on the other hand expose high frequency data as well, but here it is the
client that has to do most of the work when selecting data from those streams.
Our tpf query streaming extension focuses on non-high frequency data and aims
to lower the server effort for more efficient scaling to large numbers of concurrent
query executions.

We can split up this research in three parts, which are shown in Fig. 2. First,
the server needs to be able to efficiently store dynamic data and publicly offer
it. Second, this data must be transferable to the client. Third, a query engine at
the client must be able to evaluate queries using this data and keep its answers
up to date.

The storage of historical and real-time data requires a delicate balance be-
tween storage size and lookup speed. I will develop a method for this storage and
lookup with a focus on the efficient retrieval and storage of versions, the dynamic
properties of temporal data and the scalability for historical data. This storage
method can be based on the differential storage concept TailR uses, combined
with hdt [8] compression for snapshots. The interface through which data will
be retrieved could benefit a variant of Memento’s timegate index to allow users
to evaluate historical queries.

For enabling the client to evaluate queries, the client needs to be able to
access data from one or more data providers. I will develop a mechanism that
enables efficient transmission of temporal data between server and client. By
exploiting the similarities between and within temporal versions, I will limit the
required bandwidth as much as possible.

To reduce the server cost, the client needs to help evaluating the query.
Because of this, we assume that our solution will have a higher client processing
cost than streaming-based sparql approaches for equivalent queries. For this last
goal, I will develop a client-side query engine that is able to do federated querying
of temporal data combined with static data against heterogeneous datasources.
The engine must keep the real-time results of the query up to date. We can
distinguish three requirements for this solution:
– Allowing queries to be declared using a variant of the sparql language so

that it becomes possible for clients to declare queries over dynamic data. This
language should support the rdf stream query semantics that are being
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discussed within the rsp Community Group1. We could either use the c-
sparql or cqels query language, or make a variant if required.

– Building a client-side query engine to do continuous query evaluation, which
means that the query results are updated when data changes occur.

– Providing a format for the delivery of continuously updating results for reg-
istered queries that will allow applications to handle this data in a dynamic
context.

5 Evaluation Plan

I will evaluate each of the three major elements of this research independently:
the storage solution for dynamic data at the server; the retrieval of this data and
its transmission; and the query evaluation by the client.

5.1 Storage

The evaluation of our storage solution can be done with the help of two experi-
ments.

First, I will execute a large number of insertions of dynamic data against a
server. I will measure its cpu usage and determine if it is still able to achieve
a decent quality of service for data retrieval. I will also measure the increase in
data storage. By analyzing the variance of the cpu usage with different insertion
patterns we should be able to accept or reject Hypothesis 1, which states that
data can be added in linear time.

The second experiment will consist of the evaluation of data retrieval. This
experiment will consist of a large number of lookups against a server by both
triple contents and time instants. Doing a variance analysis on the lookup times
over these different lookup types will help us to determine the validity of Hy-
pothesis 2, which states that data can be retrieved in linear time.

These two experiments can be combined to see if one or the other demands
too much of the server’s processing power.

5.2 Retrieval and Transmission

To determine the retrieval cost of data from a server and its transmission, we
need to measure the effects of sending a large amount of lookup requests. One of
the experiments I performed on the solution that was built during my master’s
thesis [16] was made up of one server and ten physical clients. Each of these
clients could execute from one to ten concurrent unique queries. This results in
a series of 10 to 200 concurrent query executions. This setup was used to test
the client and server performance of my implementation compared to c-sparql
and cqels.
1
https://www.w3.org/community/rsp/

https://www.w3.org/community/rsp/
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Even though this experiment produced some interesting results, as will be
explained in the next section, 200 concurrent clients are not very representative
for large scale querying on the public Web. But it can already be used to partially
answer Hypothesis 3 that states that our solution has a lower server cost than the
alternatives. To extend this, I will develop a mechanism to simulate thousands of
simultaneous requests to a server that offers dynamic data. The main bottleneck
in the current experiment setup are the query engines on each client. If we were
to detach the query engines from the experiment, we could send much more
requests to the server and this would result in more representative results. This
could be done by first collecting a representative set of http requests that these
query engines send to the server. This set of requests should be based on real
non-high frequency use cases where it makes sense to have a large number of
concurrent query evaluations. These requests can be inspired by existing rsp
benchmarks like SRBench [20] and CityBench [1]. Once this collection has been
built, the client-cpu intensive task is over, and we can use this pool of requests
to quickly simulate http requests to our server. By doing a variance analysis of
the server cpu usage for my solution compared to the alternatives, we will be
able to determine the truth of Hypothesis 3.

5.3 Query Evaluation

The evaluation of the client side query engine can be done like the experiment
of my master’s thesis, as explained in the previous section. In this case, the
results would be representative since the query engine is expected to be the most
resource intensive element in this solution. The CityBench [1] rsp benchmark
could for example be used to do measurements based on datasets from various
city sensors. By doing a variance analysis of the different client’s cpu usage
for my solution compared to the alternatives, we will be able to determine how
much higher our client cpu cost is than the alternatives. The alternatives in
this case include server-side rsp engines like c-sparql and cqels, but also fully
client-side stream processing solutions using stream publication techniques like
Ztreamy [9]. This way, we test compare our solution with both sides of the ldf
axis, on the one hand we have the cases where the server does all of the work
while evaluating queries, while on the other hand we have cases where the client
does all of the work. For Hypothesis 4, which assumes that data transfer is the
main factor for query execution time, we will do a correlation test of bandwidth
usage and the corresponding query’s execution times.

6 Preliminary Results

During my master’s thesis, I did some preliminary research on the topic of con-
tinuous querying over non-high frequency real-time data. My solution consisted
of annotating triples with time to give them a timely context, which allowed this
dynamic data to be stored on a regular static tpf server. An extra layer on top
of the tpf client was able to interpret these time-annotated triples as dynamic
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Client load

Fig. 3.1: Average client cpu usage.

Server load

Fig. 3.2: Average server cpu usage for an in-

creasing amount of clients.

Fig. 3: The client and server cpu usages for one query stream for c-sparql, cqels
and our preliminary solution. Our solution has a very low server cost and a higher
average client cpu usage when compared to the alternatives.

versions of certain facts. This extra software layer could then derive the exact
moment at which the query should be re-evaluated to keep its results up to date.

The main experiment that was performed in my master’s thesis resulted in
the output from Figure 3. We can see that our approach significantly reduced
the server load when compared to c-sparql and cqels, as was the main the
goal. The client now pays for the largest part of the query executions, which is
caused by the use of tpf. The client cpu usage for our implementation spikes
at the time of query initialization because of the rewriting phase, but after that
it drops to around 5%.

7 Conclusions

Once we can publish both non-high frequency real-time and historical data at
a low server cost, we can finally allow many simultaneous clients to query this
data while keeping their results up to date, so this dynamic data can be used in
our applications with the same ease as we already do today with static data.

The Semantic Sensor Web already promotes the integration of sensors in
the Semantic Web. My solution would make medium to low frequency sensor
data queryable on a web-scale, instead of just for a few machines in a private
environment for keeping the server cost maintainable.

Current Big Data analysis techniques are able to process data streams, but
combining them with other data by discovering semantic relations still remains
difficult. The solution presented in this work could make these Big Data analyses
possible using Semantic Web techniques. This would make it possible to perform
these analyses in a federated manner over heterogeneous sources, since a strength
of Semantic Web technologies is the ability to integrate data from the whole
web. These analyses could be executed by not only one entity, but all clients
with access to the data, while still putting a reasonable load on the server.
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