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Abstract. Existing solutions to query dynamic Linked Data sources extend
the ������ language, and require continuous server processing for each query.
Traditional ������ endpoints already accept highly expressive queries, so extending
these endpoints for time-sensitive queries increases the server cost even further.
To make continuous querying over dynamic Linked Data more a�ordable, we
extend the low-cost Triple Pattern Fragments (���) interface with support for
time-sensitive queries. In this paper, we introduce the ��� Query Streamer that
allows clients to evaluate ������ queries with continuously updating results. Our
experiments indicate that this extension significantly lowers the server complexity,
at the expense of an increase in the execution time per query. We prove that by
moving the complexity of continuously evaluating queries over dynamic Linked
Data to the clients and thus increasing bandwidth usage, the cost at the server
side is significantly reduced. Our results show that this solution makes real-time
querying more scalable for a large amount of concurrent clients when compared to
the alternatives.

Keywords: Linked Data, Linked Data Fragments, ������, continuous querying,
real-time querying

1 Introduction

As the Web of Data is a dynamic dataspace, di�erent results may be returned depending
on when a question was asked. The end-user might be interested in seeing the query
results update over time, for instance, by re-executing the entire query over and over again
(“polling”). This is, however, not very practical, especially if it is unknown beforehand
when data will change. An additional problem is that many public (even static) ������
query endpoints su�er from a low availability [5]. The unrestricted complexity of ������
queries [15] combined with the public character of ������ endpoints entails a high server
cost, which makes it expensive to host such an interface with high availability. Dynamic

������ streaming solutions o�er combined access to dynamic data streams and static
background data through continuously executing queries. Because of this continuous
querying, the cost for these servers is even higher than with static querying.

In this work, we therefore devise a solution that enables clients to continuously
evaluate non-high frequency queries by polling specific fragments of the data. The result-
ing framework performs this without the server needing to remember any client state.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-47602-5_44



2 Ruben Taelman et al.

Its mechanism requires the server to annotate its data so that the client can e�ciently
determine when to retrieve fresh data. The generic approach in this paper is applied to
the use case of public transit route planning. It can be used in various other domains
with continuously updating data, such as smart city dashboards, business intelligence, or
sensor networks. This paper extends our earlier work [17] with additional experiments.

In the next section, we discuss related research on which our solution will be based.
After that, Section 3 gives a general problem statement. In Section 4, we present a
motivating use case. Section 5 discusses di�erent techniques to represent dynamic data,
after which Section 6 gives an explanation of our proposed query solution. Next, Section 7
shows an overview of our experimental setup and its results. Finally, Section 8 discusses
the conclusions of this work with further research opportunities.

2 Related Work

In this section, we first explain techniques to perform ��� annotation, which will be used
to determine freshness. Then, we zoom in on possible representations of temporal data
in ���. We finish by discussing existing ������ streaming extensions and a low-cost
(static) Linked Data publication technique.

2.1 ��� Annotations

Annotations allow us to attach metadata to triples. We might for example want to say
that a triple is only valid within a certain time interval, or that a triple is only valid in a
certain geographical area.

��� �.� [11] allows triple annotation through reification. This mechanism uses subject,
predicate, and object as predicates, which allow the addition of annotations to such
reified ��� triples. The downside of this approach is that one triple is now transformed to
three triples, which significantly increases the total amount of triples.

Singleton Properties [14] create unique instances (singletons) of predicates, which
then can be used for further specifying that relationship, for example, by adding
annotations. New instances of predicates are created by relating them to the old predicate
through the sp:singletonPropertyOf predicate. While this approach requires fewer
triples than reification to represent the same information, it still has the issue of the
original triple being lost, because the predicate is changed in this approach.

With ��� �.� [6] came graph support, which allows triples to be encapsulated into
named graphs, which can also be annotated. Graph-based annotation requires fewer triples
than both reification and singleton properties when representing the same information. It
requires the addition of a fourth element to the triple which transforms it to a quad. This
fourth element, the graph, can be used to add the annotations to.

2.2 Temporal data in the ��� model

Regular ��� triples cannot express the time and space in which the fact they describe is
true. In domains where data needs to be represented for certain times or time ranges, these
traditional representations should thus be extended. There are two main mechanisms
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for adding time [9]. Versioning will take snapshots of the complete graph every time
a change occurs. Time labeling will annotate triples with their change time. The latter
is believed to be a better approach in the context of ���, because complete snapshots
introduce overhead, especially if only a small part of the graph changes. Gutierrez
et al. made a distinction between point-based and interval-based labeling, which are
interchangeable [8]. The former states information about an element at a certain time
instant, while the latter states information at all possible times between two time instants.

The same authors introduced a temporal vocabulary [8] for the discussed mechanisms,
which will be referred to as tmp in the remainder of this document. Its core predicates are:
tmp:interval This predicate can be used on a subject to make it valid in a certain time

interval. The range of this property is a time interval, which is represented by the
two mandatory properties tmp:initial and tmp:final.

tmp:instant Used on subjects to make it valid on a certain time instant as a point-based
time representation. The range of this property is xsd:dateTime.

tmp:initial and tmp:final The domain of these predicates is a time interval. Their
range is a xsd:dateTime, and they respectively indicate the start and the end of the
interval-based time representation.

Next to these properties, we will also introduce our own predicate tmp:expiration with
range xsd:dateTime which indicates that the subject is only valid up until the given time.

2.3 ������ Streaming Extensions

Several ������ extensions exist that enable querying over data streams. These data
streams are traditionaly represented as a monotonically non-decreasing stream of triples
that are annotated with their timestamp. These require continuous processing [7] of
queries because of the constantly changing data.

�-������ [4] is an approach to querying over static and dynamic data. This system
requires the client to register a query to the server in an extended ������ syntax that allows
the use of windows over dynamic data. This query registration [3,7] must occur by clients
to make sure that the streaming-enabled ������ endpoint can continuously re-evaluate
this query, as opposed to traditional endpoints where the query is evaluated only once.
A window [2] is a subsection of facts ordered by time so that not all available information
has to be taken into account while processing. These windows can have a certain size
which indicates the time range and is advanced in time by a stepsize. �-������’s execution
of queries is based on the combination of a regular ������ engine with a Data Stream

Management System (����) [2]. The internal model of �-������ creates queries that
distribute work between the ���� and the ������ engine to respectively process the
dynamic and static data.

����� [12] is a “white box” approach, as opposed to “black box” approaches like
�-������. This means that ����� natively implements all query operators without
transforming it to another language, removing the overhead of delegating it to another
system. The syntax is similar to that of �-������, also supporting query registration and
time windows. According to previous research [12], ����� performs much better than
�-������ for large datasets; for simple queries and small datasets the opposite is true.
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2.4 Triple Pattern Fragments

Experiments have shown that more than half of public ������ endpoints have an
availability of less than 95% [5]. Any number of clients can send arbitrarily complex
������ queries, which could form a bottleneck in endpoints. Triple Pattern Fragments

(���) [18] aim to solve this issue of high interface cost by moving part of the query
evaluation to the client, which reduces the server load, at the cost of increased query
times and bandwidth. The purposely limited interface only accepts separate triple pattern
queries. Clients can use it to evaluate more complex ������ queries locally, also over
federations of interfaces [18].

3 Problem Statement

In order to lower server load during continuous query evaluation, we move a significant
part of the query evaluation from server to client. We annotate dynamic data with their
valid time to make it possible for clients to derive an optimal query evaluation frequency.
For this research, we identified the following research questions:

Question 1: Can clients use volatility knowledge to perform more e�cient continuous
������ query evaluation by polling for data?

Question 2: How does the client and server load of our solution compare to alternatives?

Question 3: How do di�erent time-annotation methods perform in terms of the resulting
execution times?

These research questions lead to the following hypotheses:

Hypothesis 1: The proposed framework has a lower server cost than alternatives.

Hypothesis 2: The proposed framework has a higher client cost than streaming-based
������ approaches for equivalent queries.

Hypothesis 3: Client-side caching of static data reduces the execution times proportional
to the fraction of static triple patterns that are present in the query.

4 Use Case

A guiding use case, based on public transport, will be referred to in the remainder of this
paper. When public transport route planning applications return dynamic data, they can
account for factors such as train delays as part of a continuously updating route plan. In
this use case, di�erent clients need to obtain all train departure information for a certain
station. This requires the following concepts:
1. Departure (static): Unique ��� for the departure of a certain train.
2. Headsign (static): The label of the train showing its destination.
3. Departure Time (static): The scheduled departure time of the train.
4. Route Label (static): The identifier for the train and its route.
5. Delay (dynamic): The delay of the train, which can increase through time.
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@prefix t: <http://example.org/train/>.
@prefix td: <http://example.org/traindata/>.
td:departure-48 t:delay "0S"^^xsd:xs:duration;

t:platform td:platform-1a;
t:departureTime "2014-12-05T10:37:00+01:00"^^xsd:dateTimeStamp;
t:headSign "Ghent";
t:routeLabel "IC 1831".

Listing 1.1: Train information with static time information according to the basic data model.

SELECT ?delay ?platform ?headSign ?routeLabel ?departureTime
WHERE {

_:id t:delay ?delay.
_:id t:platform ?platform.
_:id t:departureTime ?departureTime.
_:id t:headSign ?headSign.
_:id t:routeLabel ?routeLabel.
FILTER (?departureTime > "2015-12-08T10:20:00"^^xsd:dateTime).
FILTER (?departureTime < "2015-12-08T11:20:00"^^xsd:dateTime).

}

Listing 1.2: The basic ������ query for retrieving all upcoming train departure information in a
certain station. The two first triple patterns are dynamic, the last three are static.

6. Platform (dynamic): The platform number of the station at which the train will
depart, which can be changed through time if delays occur.

Listing 1.1 shows example data in this model. The ������ query in Listing 1.2 can
retrieve all information using this basic data model.

5 Dynamic Data Representation

Our solution consists of a partial redistribution of query evaluation workload from the
server to the client, which requires the client to be able to access the server data. There
needs to be a distinction between regular static data and continuously updating dynamic
data in the server’s dataset. For this, we chose to define a certain temporal range in
which these dynamic facts are valid, as a consequence the client will know when the data
becomes invalid and has to fetch new data to remain up-to-date. To capture the temporal
scope of data triples, we annotate this data with time. In this section, we discuss two
di�erent types of time labeling, and di�erent methods to annotate this data.

5.1 Time Labeling Types

We use interval-based labeling to indicate the start and endpoint of the period during
which triples are valid. Point-based labeling is used to indicate the expiration time.

With expiration times, we only save the latest version of a given fact in a dataset,
assuming that the old version can be removed when a newer one arrives. These expiration
times provide enough information to determine when a certain fact becomes invalid
in time. We use time intervals for storing multiple versions of the same fact, i.e., for
maintaining a history of facts. These time intervals must indicate a start- and endtime
for making it possible to distinguish between di�erent versions of a certain fact. These
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intervals cannot overlap in time for the same facts. When data is volatile, consecutive
interval-based facts will accumulate quickly. Without techniques to aggregate or remove
old data, datasets will quickly grow, which can cause increasingly slower query executions.
This problem does not exist with expiration times because in this approach we decided
to only save the latest version of a fact, so this volatility will not have any e�ect on the
dataset size.

5.2 Methods for Time Annotation

The two time labeling types introduced in the last section can be annotated on triples in
di�erent ways. In Section 2.1 we discussed several methods for ��� annotation. We will
apply time labels to triples using the singleton properties, graphs and implicit graphs
annotation techniques.

Singleton Properties Singleton properties annotation is done by creating a singleton
property for the predicate of each dynamic triple. Each of these singleton properties can
then be annotated with its time annotation, being either a time interval or expiration times.

Graphs To time-annotate triples using graphs, we can encapsulate triples inside contexts,
and annotate each context graph with a time annotation.

Implicit Graphs A ��� interface gives a unique ��� to each fragment corresponding
to a triple pattern, including patterns without variables, i.e., actual triples. Since Triple
Pattern Fragments [18] are the basis of our solution, we can interpret each fragment
as a graph. We will refer to these as implicit graphs. This ��� can then be used as
graph identifier for this triple for adding time information. For example, the ��� for the
triple <s> <p> <o> on the ��� interface located at http://example.org/dataset/ is
http://example.org/dataset?subject=s&predicate=p&object=o.

The choice of time annotation method for publishing temporal data will also depend
on its capability to group time labels. If certain dynamic triples have identical time labels,
these annotations can be shared to further reduce the required amount of triples if we
are using singleton properies or graphs. When we would have three train delay triples
which are valid for the same time interval using graph annotation, these three triples can
be placed in the same graph. This will make sure they refer to the same time interval
without having to replicate this annotation two times more. In the case of implicit graph
annotation, this grouping of triples is not possible, because each triple has a unique graph
identifier determined by the interface. This would be possible if these di�erent identifiers
are linked to each other with for example sameAs relationships that our query engine
takes into account, which would introduce further overhead.

We will execute our use case for each of these annotation methods. In practise,
an annotation method must be chosen depending on the requirements and available
technologies. If we have a datastore that supports quads, graph-based annotation is the
best choice because of it requires the least amount of triples. If our datastore does not
support quads, we can use singleton properties. If we have a ���-like interface at which

http://example.org/dataset/
http://example.org/dataset?subject=s&predicate=p&object=o
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our data is hosted, we can use implicit graphs as annotation technique, if however many
of those triples can be grouped under the same time label, singleton properties are a
better alternative because the latter has grouping support.

6 Query Engine

��� query evaluation involves server and client software, because the client actively takes
part in the query evaluation, as opposed to traditional ������ endpoints where the server
does all of the work. Our solution allows users to send a normal ������ query to the
local query engine which autonomously detects the dynamic parts of the query and
continuously sends back results from that query to the user. In this section, we discuss
the architecture of our proposed solution and the most important algorithms that were
used to implement this.

6.1 Architecture

Our solution must be able to handle regular ������ �.� queries, detect the dynamic
parts, and produce continuously updating results for non-high frequency queries. To
achieve this, we chose to build an extra software layer on top of the existing ��� client
that supports each discussed labeling type and annotation method and is capable of doing
dynamic query transformation and result streaming. At the ��� server, dynamic data must
be annotated with time depending on the used combination of labeling type and method.
The server expects dynamic data to be pushed to the platform by an external process with
varying data. In the case of graph-based annotation, we have to extend the ��� server
implementation, so that it supports quads. This dynamic data should be pushed to the
platform by an external process with varying data.

Figure 1 shows an overview of the architecture for this extra layer on top of the
��� client, which will be called the ��� Query Streamer from now on. The left-hand
side shows the User that can send a regular ������ query to the ��� Query Streamer
entry-point and receives a stream of query results. The system can execute queries
through the local Basic Graph Iterator, which is part of the ��� client and executes
queries against a ��� server.

The ��� Query Streamer consists of six major components. First, there is the Rewriter

module which is executed only once at the start of the query streaming loop. This module
is able to transform the original input query into a static and a dynamic query which
will respectively retrieve the static background data and the time-annotated changing
data. This transformation happens by querying metadata of the triple patterns against the
entry-point through the local ��� client. The Streamer module takes this dynamic query,
executes it and forwards its results to the Time Filter. The Time Filter checks the time
annotation for each of the results and rejects those that are not valid for the current time.
The minimal expiration time of all these results is then determined and used as a delayed
call to the Streamer module to continue with the streaming loop, which is determined
by the repeated invocation of the Streamer module. This minimal expiration time will
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Fig. 1: Overview of the proposed client-server architecture.

make sure that when at least one of the results expire, a new set of results will be fetched
as part of the next query iteration. The filtered dynamic results will be passed on to
the Materializer which is responsible for creating materialized static queries. This is a
transformation of the static query with the dynamic results filled in. These materialized

static queries are passed to the Result Manager which is able to cache these queries.
Finally, the Result Manager retrieves previous materialized static query results from the
local cache or executes this query for the first time and stores its results in the cache.
These results are then sent to the client who had initiated continuous query.

6.2 Algorithms

Query rewriting As mentioned in the previous section, the Rewriter module performs
a preprocessing step that can transform a regular ������ �.� query into a static and
dynamic query. A first step in this transformation is to detect which triple patterns inside
the original query refer to static triples and which refer to dynamic triples. We detect this
by making a separate query for each of the triple patterns and transforming each of them
to a dynamic query. An example of such a transformation can be found in Listing 1.3. We
then evaluate each of these transformed queries and assume a triple pattern is dynamic

if its corresponding query has at least one result. Another step before the actual query
splitting is the conversion of blank nodes to variables. We will end up with one static
query and one dynamic query, in case these graphs were originally connected, they still
need to be connected after the query splitting. This connection is only possible with
variables that are visible, meaning that these variables need to be part of the ������
clause. However, a variable can also be anonymous and not visible: these are blank
nodes. To make sure that we take into account blank nodes that connect the static and
dynamic graph, these nodes have to be converted to variables, while maintaining their
semantics. After this step, we iterate over each triple pattern of the original query and
assign them to either the static or the dynamic query depending on whether or not the
pattern is respectively static or dynamic. This assignment must maintain the hierarchical
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SELECT ?s ?p ?o ?time WHERE {
GRAPH ?g0 { ?s ?p ?o }
?g0 tmp:expiration ?time

}

Listing 1.3: Dynamic ������ query for the triple pattern ?s ?p ?o for graph-based annotation
with expiration times.

structure of the original query, in some cases this causes triple patterns to be present in
the dynamic query when using complex operators like ����� to maintain correct query
semantics. An example of this query transformation for our basic query from Listing 1.2
can be found in Listings 1.4 and 1.5.

Query materialization The Materializer module is responsible for creating materialized

static queries from the static query and the current dynamic query results. This is done
by filling in each dynamic result into the static query variables. It is possible that multiple
results are returned from the dynamic query evaluation, which is the same amount of
materialized static queries that can be derived. Assuming that we, for example, find the
following single dynamic query result from the dynamic query in Listing 1.5: {?id 7!
<http://example.org/train#train4815>, ?delay 7! "P10S"ˆˆxsd:duration} then
we can derive the materialized static query by filling in these two variables into the static
query from Listing 1.4, the resulting query can be found in Listing 1.6.

Caching The Result manager is the last step in the streaming loop for returning the
materialized static query results of one time instance. This module is responsible for either
getting results for given queries from its cache, or fetching the results from the ��� client.
First, an identifier will be determined for each materialized static query. This identifier
will serve as a key to cache static data and should correctly and uniquely identify static
results based on dynamic results. This is equivalent to saying that this identifier should be
the connection between the static and dynamic graphs. This connection is the intersection
of the variables present in the ����� clause of the static and dynamic queries. Since the
dynamic query results are already available at this point, these variables all have values,
so this cache identifier can be represented by these variable results. The graph connection
between the static and dynamic queries from Listing 1.4 and Listing 1.5 is ?id. The cache
identifier for a result where ?id is "train:4815" is for example "?id=train:4815".

SELECT ?id ?headSign ?routeLabel ?departureTime
WHERE {

?id t:departureTime ?departureTime.
?id t:headSign ?headSign.
?id t:routeLabel ?routeLabel.
FILTER (?departureTime > "2015-12-08T10:20:00"^^xsd:dateTime).
FILTER (?departureTime < "2015-12-08T11:20:00"^^xsd:dateTime).

}

Listing 1.4: Static ������ query which has been derived from the basic ������ query from
Listing 1.2 by the Rewriter module.
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SELECT ?id ?delay ?platform ?final0 ?final1
WHERE {

GRAPH ?g0 { ?id t:delay ?delay. }
?g0 tmp:expiration ?final0.
GRAPH ?g1 { ?id t:platform ?platform. }
?g1 tmp:expiration ?final1.

}

Listing 1.5: Dynamic ������ query which has been derived from the basic ������ query from
Listing 1.2 by the Rewriter module. Graph-based annotation is used with expiration times.

SELECT ?headSign ?routeLabel ?departureTime
WHERE {

<http://example.org/train#train4815> t:departureTime ?departureTime.
<http://example.org/train#train4815> t:headSign ?headSign.
<http://example.org/train#train4815> t:routeLabel ?routeLabel.
FILTER (?departureTime > "2015-12-08T10:20:00"^^xsd:dateTime).
FILTER (?departureTime < "2015-12-08T11:20:00"^^xsd:dateTime).

}

Listing 1.6: Materialized static ������ query derived by filling in the dynamic query results into
the static query from Listing 1.6.

7 Evaluation

In order to validate our hypotheses from Section 3, we set up an experiment to measure
the impact of our proposed redistribution of workload between the client and server by
simultaneously executing a set of queries against a server using our proposed solution.
We repeat this experiment for two state-of-the-art solutions: �-������ and �����.

To test the client and server performance, our experiment consisted of one server
and ten physical clients. Each of these clients can execute from one to twenty unique
concurrent queries based on the use case from Section 4. The data for this experiment
was derived from real-world Belgian railway data using the iRail API1. This results in a
series of 10 to 200 concurrent query executions. This setup was used to test the client
and server performance of di�erent ������ streaming approaches.

For comparing the e�ciency of di�erent time annotation methods and for measuring
the e�ectiveness of our client-side cache, we measured the execution times of the query
for our use case from Section 4. This measurement was done for di�erent annotation
methods, once with the cache and once without the cache. For discovering the evolution
of the query evaluation e�ciency through time, the measurements were done over each
query stream iteration of the query.

The discussed architecture was implemented2 in JavaScript using Node.js to allow
for easy communication with the existing ��� client.

The tests3 were executed on the Virtual Wall (generation 2) environment from
iMinds [10]. Each machine had two Hexacore Intel E5645 (2.4GHz) ���s with 24 �� ���

1 https://hello.irail.be/api/1-0/
2 The source code for this implementation is available at https://github.com/
LinkedDataFragments/QueryStreamer.js/tree/eswc2016

3 The code used to run these experiments with the relevant queries can be found at https:
//github.com/rubensworks/TPFStreamingQueryExecutor-experiments/

https://hello.irail.be/api/1-0/
https://github.com/LinkedDataFragments/QueryStreamer.js/tree/eswc2016
https://github.com/LinkedDataFragments/QueryStreamer.js/tree/eswc2016
https://github.com/rubensworks/TPFStreamingQueryExecutor-experiments/
https://github.com/rubensworks/TPFStreamingQueryExecutor-experiments/
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Server load

Fig. a: The server ��� usage of our solution proves to be
influenced less by the number of clients.

Client load

Fig. b: In the case of 200 concurrent clients, client ��� usage
initially is high after which it converges to about 5%. The
usage for �-������ and ����� is almost non-existing.

Fig. 2: Average server and client ��� usage for one query stream for �-������, ����� and the
proposed solution. Our solution e�ectively moves complexity from the server to the client.

and was running Ubuntu 12.04 ���. For �����, we used version 1.0.1 of the engine [13].
For �-������, this was version 0.9 [16]. The dataset for this use case consisted of about
300 static triples, and around 200 dynamic triples that were created and removed each
ten seconds. Even this relatively small dataset size already reveals important di�erences
in server and client cost, as we will discuss in the paragraphs below.

Server Cost The server performance results from our main experiment can be seen in
Figure 2a. This plot shows an increasing ��� usage for �-������ and ����� for higher
numbers of concurrent query executions. On the other hand, our solution never reaches
more than one percent of server ��� usage. Figure 3a shows a detailed view on the
measurements in the case of 200 simultaneous query executions: the ��� peaks for the
alternative approaches are much higher and more frequent than for our solution.

Client Cost The results for the average ��� usage across the duration of the query
evaluation of all clients that sent queries to the server in our main experiment can be
seen in Figures 2b and 3b. The clients that were sending �-������ and ����� queries to
the server had a client ��� usage of nearly zero percent for the whole duration of the
query evaluation. The clients using the client-side ��� Query Streamer solution that was
presented in this work had an initial ��� peak reaching about 80%, which dropped to
about 5% after 4 seconds.

Annotation Methods The execution times for the di�erent annotation methods, once
with and once without cache can be seen in Figure 4. The three annotation methods have
about the same relative performance in all figures, but the execution times are generally
lower in the case where the client-side cache was used, except for the first query iteration.
The execution times for expiration time annotation when no cache is used are constant,
while the execution times with caching slightly decrease over time.
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Server load

Fig. a: Server ��� peaks for �-������ and ����� compared
to our solution.

Client load

Fig. b: Client ��� usage for our solution is significantly higher.

Fig. 3: Detailed view on all server and client ��� measurements for �-������, ����� and the
solution presented in this work for 200 simultaneous query evaluations against the server.

Fig. a: Time intervals without caching. Fig. b: Time intervals with caching.

Fig. c: Expiration times without caching. Fig. d: Expiration times with caching.

Fig. 4: Executions times for the three di�erent types of dynamic data representation for several
subsequent streaming requests. The figures show a mostly linear increase when using time intervals
and constant execution times for annotation using expiration times. In general, caching results in
lower execution times. They also reveal that the graph approach has the lowest execution times.
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8 Conclusions

In this paper, we researched a solution for querying over dynamic data with a low server
cost, by continuously polling the data based on volatility information. In this section, we
draw conclusions from our evaluation results to give an answer to the research questions
and hypotheses we defined in Section 3. First, the server and client costs for our solution
will be compared with the alternatives. After that, the e�ect of our client-side cache
will be explained. Next, we will discuss the e�ect of time annotation on the amount of
requests to be sent, after which the performance of our solution will be shown and the
e�ects of the annotation methods.

Server cost The results from Section 7 confirm Hypothesis 1, in which we wanted to
know if we could lower the server cost when compared to �-������ and �����. Not
only is the server cost for our solution more than ten times lower on average when
compared to the alternatives, this cost also increases much slower for a growing number
of simultaneous clients. This makes our proposed solution more scalable for the server.
Another disadvantage of �-������ and ����� is the fact that the server load for a large
number of concurrent clients varies significantly, as can be seen in Figure 3a. This makes
it hard to scale the required processing powers for servers using these technologies. Our
solution has a low and more constant ��� usage.

Client cost The results for the client load measurements from Section 7 confirm
Hypothesis 2, which stated that our solution increases the client’s processing need. The
required client processing power using our solution is clearly much higher than for
�-������ and �����. This is because we redistributed the required processing power
from the server to the client. In our solution, it is the client that has to do most of the
work for evaluating queries, which puts less load on the server. The load on the client
still remains around 5% for the largest part of the query evaluation as shown in Figure 2b.
Only during the first few seconds, the query engines ��� usage peaks, which is because
of the processor-intensive rewriting step that needs to be done once at the start of each
dynamic query evaluation.

Caching We can also confirm Hypothesis 3 about the positive e�ect of caching from
the results in Section 7. Our caching solution has a positive e�ect on the execution
times. In an optimal scenario for our use case, caching would lead to an execution time
reduction of 60% because three of the five triple patterns in the query for our use case
from Section 4 are dynamic. For our results, this caching leads to an average reduction
of 56% which is close to the optimal case. Since we are working with dynamic data,
some required background-data is bound to overlap, in these cases it is advantageous
to have a client-side caching solution so that these redundant requests for static data
can be avoided. The longer our query evaluation runs, the more static data the cache
accumulates, so the bigger the chance that there are cache hits when background data is
needed in a certain query iteration. Future research should indicate what the limits of
such a client-side cache for static data are, and whether or not it is advantageous to reuse
this cache for di�erent queries.
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Request reduction By annotating dynamic data with a time annotation, we successfully
reduced the amount of required requests for polling-based ������ querying to a minimum,
which answers Research Question 1 about the question if clients can use volatility
knowdledge to perform continuous querying. Because now, the client can derive the
exact moment at which the data can change on the server, and this will be used to shedule
a new query execution on the server. In future research, it is still possible to reduce the
amount of requests our client engine needs to send through a better caching strategy,
which could for example also temporarily cache dynamic data which changes at di�erent
frequencies. We can also look into di�erential data transmission by only sending data to
the client that has been changed since the last time the client has requested a specific
resource.

Performance For answering Research Question 2, the performance of our solution
compared to alternatives, we compared our solution with two state-of-the-art approaches
for dynamic ������ querying. Our solution significantly reduces the required server
processing per client, this complexity is mostly moved to the client. This comparison
shows that our technique allows data providers to o�er dynamic data which can be used to
continuously evaluate dynamic queries with a low server cost. Our low-cost publication
technique for dynamic data is useful when the number of potential simultaneous clients
is large. When this data is needed for only a small number of clients in a closed o�
environment and query evaluation must happen fast, traditional approaches like ����� or
�-������ are advised. These are only two possible points on the Linked Data Fragments

axis [18], depending on the publication requirements, combinations of these approaches
can be used.

Annotation methods In Research Question 3, we wanted to know how the di�erent
annotation methods influenced the execution times. From the results in Section 7, we can
conclude that graph-based annotation results in the lowest execution times. It can also
be seen that annotation with time intervals has the problem of continuously increasing
execution times, because of the continuously growing dataset. Time interval annotation
can be desired if we for example want to maintain the history of certain facts, as
opposed to just having the last version of facts using expiration times. In future work, we
will investigate alternative techniques to support time interval annotation without the
continuously increasing execution times.

In this work, the frequency at which our queries are updated is purely data-driven
using time intervals or expiration times. In the future it might be interesting, to provide a
control to the user to change this frequency, if for example this user only desires query
updates at a lower frequency than the data actually changes.

In future work, it is important to test this approach with a larger variety of use cases.
The time annotation mechanisms we use are generic enough to transform all static facts
to dynamic data for any number of triples. The CityBench [1] ��� engine benchmark can
for example be used to evaluate these di�erent cases based on city sensor data. These tests
must be scaled (both in terms of clients as in terms of dataset size), so that the maximum
number of concurrent requests can be determined, with respect to the dataset size.



Continuous Client-side Query Evaluation over Dynamic Linked Data 15

References

1. Ali, M.I., Gao, F., Mileo, A.: CityBench: A configurable benchmark to evaluate ��� engines
using smart city datasets. In: The Semantic Web - ISWC 2015, Lecture Notes in Computer
Science, vol. 9367, pp. 374–389 (2015)

2. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava,
U., Widom, J.: ������: The Stanford data stream management system. Book chapter (2004)

3. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream Reasoning: Where
We Got So Far. In: Proceedings of the NeFoRS2010 Workshop (2010)

4. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying ��� streams with
�-������. SIGMOD Rec. 39(1), 20–26 (Sep 2010)

5. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: ������ web-querying infras-
tructure: Ready for action? In: The Semantic Web–ISWC 2013, pp. 277–293 (2013)

6. Cyganiak, R., Wood, D., Lanthaler, M.: ��� 1.1: Concepts and abstract syntax. Recommenda-
tion, W3C (Feb 2014), http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

7. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! Reasoning upon
rapidly changing information. Intelligent Systems, IEEE 24(6), 83–89 (Nov 2009)

8. Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing time into ���. Knowledge and Data
Engineering, IEEE Transactions on 19(2), 207–218 (Feb 2007)

9. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal ���. In: The Semantic Web: Research and
Applications, pp. 93–107 (2005)

10. iLab.t, iMinds: Virtual Wall: wired networks and applications, http://ilabt.iminds.be/
virtualwall

11. Klyne, G., J. Carroll, J.: Resource Description Framework (���): Concepts and abstract syntax.
Rec., W3C (Feb 2004), http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

12. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach
for unified processing of linked streams and Linked Data. In: The Semantic Web–ISWC 2011,
pp. 370–388 (2011)

13. Levan, C.: ����� engine: Instructions on experimenting �����, https://code.google.com/
p/cqels/wiki/CQELS_engine

14. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like ��� reification? Making statements about
statements using singleton property. In: Proceedings of the 23rd International Conference on
World Wide Web. pp. 759–770. WWW ’14, New York, NY, USA (2014)

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of ������. In: International
semantic web conference. vol. 4273, pp. 30–43 (2006)

16. StreamReasoning: Continuous ������ (�-������) ready to go pack, http://
streamreasoning.org/download

17. Taelman, R., Verborgh, R., Colpaert, P., Mannens, E., Van de Walle, R.: Continuously updating
query results over real-time Linked Data. In: Proceedings of the 2nd Workshop on Managing
the Evolution and Preservation of the Data Web (May 2016)

18. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester,
B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-cost knowledge graph
interface for the Web. Journal of Web Semantics 37–38, 184–206 (2016)

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://ilabt.iminds.be/virtualwall
http://ilabt.iminds.be/virtualwall
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://code.google.com/p/cqels/wiki/CQELS_engine
https://code.google.com/p/cqels/wiki/CQELS_engine
http://streamreasoning.org/download
http://streamreasoning.org/download

	Continuous Client-side Query Evaluationover Dynamic Linked Data

